This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of a function given in maps-to notation, with a slightly different sethood condition. (Contributed by Stefan O'Rear, 30-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fvmpt3.a | ⊢ ( 𝑥 = 𝐴 → 𝐵 = 𝐶 ) | |
| fvmpt3.b | ⊢ 𝐹 = ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) | ||
| fvmpt3.c | ⊢ ( 𝑥 ∈ 𝐷 → 𝐵 ∈ 𝑉 ) | ||
| Assertion | fvmpt3 | ⊢ ( 𝐴 ∈ 𝐷 → ( 𝐹 ‘ 𝐴 ) = 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvmpt3.a | ⊢ ( 𝑥 = 𝐴 → 𝐵 = 𝐶 ) | |
| 2 | fvmpt3.b | ⊢ 𝐹 = ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) | |
| 3 | fvmpt3.c | ⊢ ( 𝑥 ∈ 𝐷 → 𝐵 ∈ 𝑉 ) | |
| 4 | 1 | eleq1d | ⊢ ( 𝑥 = 𝐴 → ( 𝐵 ∈ 𝑉 ↔ 𝐶 ∈ 𝑉 ) ) |
| 5 | 4 3 | vtoclga | ⊢ ( 𝐴 ∈ 𝐷 → 𝐶 ∈ 𝑉 ) |
| 6 | 1 2 | fvmptg | ⊢ ( ( 𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑉 ) → ( 𝐹 ‘ 𝐴 ) = 𝐶 ) |
| 7 | 5 6 | mpdan | ⊢ ( 𝐴 ∈ 𝐷 → ( 𝐹 ‘ 𝐴 ) = 𝐶 ) |