This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Wallis' formula for π : Wallis' product converges to π / 2 . (Contributed by Glauco Siliprandi, 29-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | wallispi.1 | |- F = ( k e. NN |-> ( ( ( 2 x. k ) / ( ( 2 x. k ) - 1 ) ) x. ( ( 2 x. k ) / ( ( 2 x. k ) + 1 ) ) ) ) |
|
| wallispi.2 | |- W = ( n e. NN |-> ( seq 1 ( x. , F ) ` n ) ) |
||
| Assertion | wallispi | |- W ~~> ( _pi / 2 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wallispi.1 | |- F = ( k e. NN |-> ( ( ( 2 x. k ) / ( ( 2 x. k ) - 1 ) ) x. ( ( 2 x. k ) / ( ( 2 x. k ) + 1 ) ) ) ) |
|
| 2 | wallispi.2 | |- W = ( n e. NN |-> ( seq 1 ( x. , F ) ` n ) ) |
|
| 3 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 4 | 1zzd | |- ( T. -> 1 e. ZZ ) |
|
| 5 | eqid | |- ( n e. NN0 |-> S. ( 0 (,) _pi ) ( ( sin ` x ) ^ n ) _d x ) = ( n e. NN0 |-> S. ( 0 (,) _pi ) ( ( sin ` x ) ^ n ) _d x ) |
|
| 6 | eqid | |- ( n e. NN |-> ( ( ( n e. NN0 |-> S. ( 0 (,) _pi ) ( ( sin ` x ) ^ n ) _d x ) ` ( 2 x. n ) ) / ( ( n e. NN0 |-> S. ( 0 (,) _pi ) ( ( sin ` x ) ^ n ) _d x ) ` ( ( 2 x. n ) + 1 ) ) ) ) = ( n e. NN |-> ( ( ( n e. NN0 |-> S. ( 0 (,) _pi ) ( ( sin ` x ) ^ n ) _d x ) ` ( 2 x. n ) ) / ( ( n e. NN0 |-> S. ( 0 (,) _pi ) ( ( sin ` x ) ^ n ) _d x ) ` ( ( 2 x. n ) + 1 ) ) ) ) |
|
| 7 | eqid | |- ( n e. NN |-> ( ( _pi / 2 ) x. ( 1 / ( seq 1 ( x. , F ) ` n ) ) ) ) = ( n e. NN |-> ( ( _pi / 2 ) x. ( 1 / ( seq 1 ( x. , F ) ` n ) ) ) ) |
|
| 8 | eqid | |- ( n e. NN |-> ( ( ( 2 x. n ) + 1 ) / ( 2 x. n ) ) ) = ( n e. NN |-> ( ( ( 2 x. n ) + 1 ) / ( 2 x. n ) ) ) |
|
| 9 | 1 5 6 7 8 | wallispilem5 | |- ( n e. NN |-> ( ( _pi / 2 ) x. ( 1 / ( seq 1 ( x. , F ) ` n ) ) ) ) ~~> 1 |
| 10 | 9 | a1i | |- ( T. -> ( n e. NN |-> ( ( _pi / 2 ) x. ( 1 / ( seq 1 ( x. , F ) ` n ) ) ) ) ~~> 1 ) |
| 11 | 2cnd | |- ( T. -> 2 e. CC ) |
|
| 12 | picn | |- _pi e. CC |
|
| 13 | 12 | a1i | |- ( T. -> _pi e. CC ) |
| 14 | pire | |- _pi e. RR |
|
| 15 | pipos | |- 0 < _pi |
|
| 16 | 14 15 | gt0ne0ii | |- _pi =/= 0 |
| 17 | 16 | a1i | |- ( T. -> _pi =/= 0 ) |
| 18 | 11 13 17 | divcld | |- ( T. -> ( 2 / _pi ) e. CC ) |
| 19 | nnex | |- NN e. _V |
|
| 20 | 19 | mptex | |- ( n e. NN |-> ( 1 / ( seq 1 ( x. , F ) ` n ) ) ) e. _V |
| 21 | 20 | a1i | |- ( T. -> ( n e. NN |-> ( 1 / ( seq 1 ( x. , F ) ` n ) ) ) e. _V ) |
| 22 | 12 | a1i | |- ( n e. NN -> _pi e. CC ) |
| 23 | 22 | halfcld | |- ( n e. NN -> ( _pi / 2 ) e. CC ) |
| 24 | elnnuz | |- ( n e. NN <-> n e. ( ZZ>= ` 1 ) ) |
|
| 25 | 24 | biimpi | |- ( n e. NN -> n e. ( ZZ>= ` 1 ) ) |
| 26 | oveq2 | |- ( k = j -> ( 2 x. k ) = ( 2 x. j ) ) |
|
| 27 | 26 | oveq1d | |- ( k = j -> ( ( 2 x. k ) - 1 ) = ( ( 2 x. j ) - 1 ) ) |
| 28 | 26 27 | oveq12d | |- ( k = j -> ( ( 2 x. k ) / ( ( 2 x. k ) - 1 ) ) = ( ( 2 x. j ) / ( ( 2 x. j ) - 1 ) ) ) |
| 29 | 26 | oveq1d | |- ( k = j -> ( ( 2 x. k ) + 1 ) = ( ( 2 x. j ) + 1 ) ) |
| 30 | 26 29 | oveq12d | |- ( k = j -> ( ( 2 x. k ) / ( ( 2 x. k ) + 1 ) ) = ( ( 2 x. j ) / ( ( 2 x. j ) + 1 ) ) ) |
| 31 | 28 30 | oveq12d | |- ( k = j -> ( ( ( 2 x. k ) / ( ( 2 x. k ) - 1 ) ) x. ( ( 2 x. k ) / ( ( 2 x. k ) + 1 ) ) ) = ( ( ( 2 x. j ) / ( ( 2 x. j ) - 1 ) ) x. ( ( 2 x. j ) / ( ( 2 x. j ) + 1 ) ) ) ) |
| 32 | elfznn | |- ( j e. ( 1 ... n ) -> j e. NN ) |
|
| 33 | 2cnd | |- ( j e. NN -> 2 e. CC ) |
|
| 34 | nncn | |- ( j e. NN -> j e. CC ) |
|
| 35 | 33 34 | mulcld | |- ( j e. NN -> ( 2 x. j ) e. CC ) |
| 36 | 1cnd | |- ( j e. NN -> 1 e. CC ) |
|
| 37 | 35 36 | subcld | |- ( j e. NN -> ( ( 2 x. j ) - 1 ) e. CC ) |
| 38 | 1red | |- ( j e. NN -> 1 e. RR ) |
|
| 39 | 1t1e1 | |- ( 1 x. 1 ) = 1 |
|
| 40 | 38 38 | remulcld | |- ( j e. NN -> ( 1 x. 1 ) e. RR ) |
| 41 | 2re | |- 2 e. RR |
|
| 42 | 41 | a1i | |- ( j e. NN -> 2 e. RR ) |
| 43 | 42 38 | remulcld | |- ( j e. NN -> ( 2 x. 1 ) e. RR ) |
| 44 | nnre | |- ( j e. NN -> j e. RR ) |
|
| 45 | 42 44 | remulcld | |- ( j e. NN -> ( 2 x. j ) e. RR ) |
| 46 | 1rp | |- 1 e. RR+ |
|
| 47 | 46 | a1i | |- ( j e. NN -> 1 e. RR+ ) |
| 48 | 1lt2 | |- 1 < 2 |
|
| 49 | 48 | a1i | |- ( j e. NN -> 1 < 2 ) |
| 50 | 38 42 47 49 | ltmul1dd | |- ( j e. NN -> ( 1 x. 1 ) < ( 2 x. 1 ) ) |
| 51 | 0le2 | |- 0 <_ 2 |
|
| 52 | 51 | a1i | |- ( j e. NN -> 0 <_ 2 ) |
| 53 | nnge1 | |- ( j e. NN -> 1 <_ j ) |
|
| 54 | 38 44 42 52 53 | lemul2ad | |- ( j e. NN -> ( 2 x. 1 ) <_ ( 2 x. j ) ) |
| 55 | 40 43 45 50 54 | ltletrd | |- ( j e. NN -> ( 1 x. 1 ) < ( 2 x. j ) ) |
| 56 | 39 55 | eqbrtrrid | |- ( j e. NN -> 1 < ( 2 x. j ) ) |
| 57 | 38 56 | gtned | |- ( j e. NN -> ( 2 x. j ) =/= 1 ) |
| 58 | 35 36 57 | subne0d | |- ( j e. NN -> ( ( 2 x. j ) - 1 ) =/= 0 ) |
| 59 | 35 37 58 | divcld | |- ( j e. NN -> ( ( 2 x. j ) / ( ( 2 x. j ) - 1 ) ) e. CC ) |
| 60 | 35 36 | addcld | |- ( j e. NN -> ( ( 2 x. j ) + 1 ) e. CC ) |
| 61 | 0red | |- ( j e. NN -> 0 e. RR ) |
|
| 62 | 45 38 | readdcld | |- ( j e. NN -> ( ( 2 x. j ) + 1 ) e. RR ) |
| 63 | 47 | rpgt0d | |- ( j e. NN -> 0 < 1 ) |
| 64 | 2rp | |- 2 e. RR+ |
|
| 65 | 64 | a1i | |- ( j e. NN -> 2 e. RR+ ) |
| 66 | nnrp | |- ( j e. NN -> j e. RR+ ) |
|
| 67 | 65 66 | rpmulcld | |- ( j e. NN -> ( 2 x. j ) e. RR+ ) |
| 68 | 38 67 | ltaddrp2d | |- ( j e. NN -> 1 < ( ( 2 x. j ) + 1 ) ) |
| 69 | 61 38 62 63 68 | lttrd | |- ( j e. NN -> 0 < ( ( 2 x. j ) + 1 ) ) |
| 70 | 61 69 | gtned | |- ( j e. NN -> ( ( 2 x. j ) + 1 ) =/= 0 ) |
| 71 | 35 60 70 | divcld | |- ( j e. NN -> ( ( 2 x. j ) / ( ( 2 x. j ) + 1 ) ) e. CC ) |
| 72 | 59 71 | mulcld | |- ( j e. NN -> ( ( ( 2 x. j ) / ( ( 2 x. j ) - 1 ) ) x. ( ( 2 x. j ) / ( ( 2 x. j ) + 1 ) ) ) e. CC ) |
| 73 | 32 72 | syl | |- ( j e. ( 1 ... n ) -> ( ( ( 2 x. j ) / ( ( 2 x. j ) - 1 ) ) x. ( ( 2 x. j ) / ( ( 2 x. j ) + 1 ) ) ) e. CC ) |
| 74 | 1 31 32 73 | fvmptd3 | |- ( j e. ( 1 ... n ) -> ( F ` j ) = ( ( ( 2 x. j ) / ( ( 2 x. j ) - 1 ) ) x. ( ( 2 x. j ) / ( ( 2 x. j ) + 1 ) ) ) ) |
| 75 | 64 | a1i | |- ( j e. ( 1 ... n ) -> 2 e. RR+ ) |
| 76 | 32 | nnrpd | |- ( j e. ( 1 ... n ) -> j e. RR+ ) |
| 77 | 75 76 | rpmulcld | |- ( j e. ( 1 ... n ) -> ( 2 x. j ) e. RR+ ) |
| 78 | 45 38 | resubcld | |- ( j e. NN -> ( ( 2 x. j ) - 1 ) e. RR ) |
| 79 | 1m1e0 | |- ( 1 - 1 ) = 0 |
|
| 80 | 38 45 38 56 | ltsub1dd | |- ( j e. NN -> ( 1 - 1 ) < ( ( 2 x. j ) - 1 ) ) |
| 81 | 79 80 | eqbrtrrid | |- ( j e. NN -> 0 < ( ( 2 x. j ) - 1 ) ) |
| 82 | 78 81 | elrpd | |- ( j e. NN -> ( ( 2 x. j ) - 1 ) e. RR+ ) |
| 83 | 32 82 | syl | |- ( j e. ( 1 ... n ) -> ( ( 2 x. j ) - 1 ) e. RR+ ) |
| 84 | 77 83 | rpdivcld | |- ( j e. ( 1 ... n ) -> ( ( 2 x. j ) / ( ( 2 x. j ) - 1 ) ) e. RR+ ) |
| 85 | 41 | a1i | |- ( j e. ( 1 ... n ) -> 2 e. RR ) |
| 86 | 32 | nnred | |- ( j e. ( 1 ... n ) -> j e. RR ) |
| 87 | 85 86 | remulcld | |- ( j e. ( 1 ... n ) -> ( 2 x. j ) e. RR ) |
| 88 | 75 | rpge0d | |- ( j e. ( 1 ... n ) -> 0 <_ 2 ) |
| 89 | 76 | rpge0d | |- ( j e. ( 1 ... n ) -> 0 <_ j ) |
| 90 | 85 86 88 89 | mulge0d | |- ( j e. ( 1 ... n ) -> 0 <_ ( 2 x. j ) ) |
| 91 | 87 90 | ge0p1rpd | |- ( j e. ( 1 ... n ) -> ( ( 2 x. j ) + 1 ) e. RR+ ) |
| 92 | 77 91 | rpdivcld | |- ( j e. ( 1 ... n ) -> ( ( 2 x. j ) / ( ( 2 x. j ) + 1 ) ) e. RR+ ) |
| 93 | 84 92 | rpmulcld | |- ( j e. ( 1 ... n ) -> ( ( ( 2 x. j ) / ( ( 2 x. j ) - 1 ) ) x. ( ( 2 x. j ) / ( ( 2 x. j ) + 1 ) ) ) e. RR+ ) |
| 94 | 74 93 | eqeltrd | |- ( j e. ( 1 ... n ) -> ( F ` j ) e. RR+ ) |
| 95 | 94 | adantl | |- ( ( n e. NN /\ j e. ( 1 ... n ) ) -> ( F ` j ) e. RR+ ) |
| 96 | rpmulcl | |- ( ( j e. RR+ /\ w e. RR+ ) -> ( j x. w ) e. RR+ ) |
|
| 97 | 96 | adantl | |- ( ( n e. NN /\ ( j e. RR+ /\ w e. RR+ ) ) -> ( j x. w ) e. RR+ ) |
| 98 | 25 95 97 | seqcl | |- ( n e. NN -> ( seq 1 ( x. , F ) ` n ) e. RR+ ) |
| 99 | 98 | rpcnd | |- ( n e. NN -> ( seq 1 ( x. , F ) ` n ) e. CC ) |
| 100 | 98 | rpne0d | |- ( n e. NN -> ( seq 1 ( x. , F ) ` n ) =/= 0 ) |
| 101 | 99 100 | reccld | |- ( n e. NN -> ( 1 / ( seq 1 ( x. , F ) ` n ) ) e. CC ) |
| 102 | 23 101 | mulcld | |- ( n e. NN -> ( ( _pi / 2 ) x. ( 1 / ( seq 1 ( x. , F ) ` n ) ) ) e. CC ) |
| 103 | 7 102 | fmpti | |- ( n e. NN |-> ( ( _pi / 2 ) x. ( 1 / ( seq 1 ( x. , F ) ` n ) ) ) ) : NN --> CC |
| 104 | 103 | a1i | |- ( T. -> ( n e. NN |-> ( ( _pi / 2 ) x. ( 1 / ( seq 1 ( x. , F ) ` n ) ) ) ) : NN --> CC ) |
| 105 | 104 | ffvelcdmda | |- ( ( T. /\ j e. NN ) -> ( ( n e. NN |-> ( ( _pi / 2 ) x. ( 1 / ( seq 1 ( x. , F ) ` n ) ) ) ) ` j ) e. CC ) |
| 106 | fveq2 | |- ( n = j -> ( seq 1 ( x. , F ) ` n ) = ( seq 1 ( x. , F ) ` j ) ) |
|
| 107 | 106 | eleq1d | |- ( n = j -> ( ( seq 1 ( x. , F ) ` n ) e. RR+ <-> ( seq 1 ( x. , F ) ` j ) e. RR+ ) ) |
| 108 | 107 98 | vtoclga | |- ( j e. NN -> ( seq 1 ( x. , F ) ` j ) e. RR+ ) |
| 109 | 108 | rpcnd | |- ( j e. NN -> ( seq 1 ( x. , F ) ` j ) e. CC ) |
| 110 | 108 | rpne0d | |- ( j e. NN -> ( seq 1 ( x. , F ) ` j ) =/= 0 ) |
| 111 | 36 109 110 | divrecd | |- ( j e. NN -> ( 1 / ( seq 1 ( x. , F ) ` j ) ) = ( 1 x. ( 1 / ( seq 1 ( x. , F ) ` j ) ) ) ) |
| 112 | 12 | a1i | |- ( j e. NN -> _pi e. CC ) |
| 113 | 65 | rpne0d | |- ( j e. NN -> 2 =/= 0 ) |
| 114 | 16 | a1i | |- ( j e. NN -> _pi =/= 0 ) |
| 115 | 33 112 113 114 | divcan6d | |- ( j e. NN -> ( ( 2 / _pi ) x. ( _pi / 2 ) ) = 1 ) |
| 116 | 115 | eqcomd | |- ( j e. NN -> 1 = ( ( 2 / _pi ) x. ( _pi / 2 ) ) ) |
| 117 | 116 | oveq1d | |- ( j e. NN -> ( 1 x. ( 1 / ( seq 1 ( x. , F ) ` j ) ) ) = ( ( ( 2 / _pi ) x. ( _pi / 2 ) ) x. ( 1 / ( seq 1 ( x. , F ) ` j ) ) ) ) |
| 118 | 33 112 114 | divcld | |- ( j e. NN -> ( 2 / _pi ) e. CC ) |
| 119 | 112 | halfcld | |- ( j e. NN -> ( _pi / 2 ) e. CC ) |
| 120 | 109 110 | reccld | |- ( j e. NN -> ( 1 / ( seq 1 ( x. , F ) ` j ) ) e. CC ) |
| 121 | 118 119 120 | mulassd | |- ( j e. NN -> ( ( ( 2 / _pi ) x. ( _pi / 2 ) ) x. ( 1 / ( seq 1 ( x. , F ) ` j ) ) ) = ( ( 2 / _pi ) x. ( ( _pi / 2 ) x. ( 1 / ( seq 1 ( x. , F ) ` j ) ) ) ) ) |
| 122 | 111 117 121 | 3eqtrd | |- ( j e. NN -> ( 1 / ( seq 1 ( x. , F ) ` j ) ) = ( ( 2 / _pi ) x. ( ( _pi / 2 ) x. ( 1 / ( seq 1 ( x. , F ) ` j ) ) ) ) ) |
| 123 | eqidd | |- ( j e. NN -> ( n e. NN |-> ( 1 / ( seq 1 ( x. , F ) ` n ) ) ) = ( n e. NN |-> ( 1 / ( seq 1 ( x. , F ) ` n ) ) ) ) |
|
| 124 | 106 | oveq2d | |- ( n = j -> ( 1 / ( seq 1 ( x. , F ) ` n ) ) = ( 1 / ( seq 1 ( x. , F ) ` j ) ) ) |
| 125 | 124 | adantl | |- ( ( j e. NN /\ n = j ) -> ( 1 / ( seq 1 ( x. , F ) ` n ) ) = ( 1 / ( seq 1 ( x. , F ) ` j ) ) ) |
| 126 | id | |- ( j e. NN -> j e. NN ) |
|
| 127 | 108 | rpreccld | |- ( j e. NN -> ( 1 / ( seq 1 ( x. , F ) ` j ) ) e. RR+ ) |
| 128 | 123 125 126 127 | fvmptd | |- ( j e. NN -> ( ( n e. NN |-> ( 1 / ( seq 1 ( x. , F ) ` n ) ) ) ` j ) = ( 1 / ( seq 1 ( x. , F ) ` j ) ) ) |
| 129 | eqidd | |- ( j e. NN -> ( n e. NN |-> ( ( _pi / 2 ) x. ( 1 / ( seq 1 ( x. , F ) ` n ) ) ) ) = ( n e. NN |-> ( ( _pi / 2 ) x. ( 1 / ( seq 1 ( x. , F ) ` n ) ) ) ) ) |
|
| 130 | 125 | oveq2d | |- ( ( j e. NN /\ n = j ) -> ( ( _pi / 2 ) x. ( 1 / ( seq 1 ( x. , F ) ` n ) ) ) = ( ( _pi / 2 ) x. ( 1 / ( seq 1 ( x. , F ) ` j ) ) ) ) |
| 131 | 119 120 | mulcld | |- ( j e. NN -> ( ( _pi / 2 ) x. ( 1 / ( seq 1 ( x. , F ) ` j ) ) ) e. CC ) |
| 132 | 129 130 126 131 | fvmptd | |- ( j e. NN -> ( ( n e. NN |-> ( ( _pi / 2 ) x. ( 1 / ( seq 1 ( x. , F ) ` n ) ) ) ) ` j ) = ( ( _pi / 2 ) x. ( 1 / ( seq 1 ( x. , F ) ` j ) ) ) ) |
| 133 | 132 | oveq2d | |- ( j e. NN -> ( ( 2 / _pi ) x. ( ( n e. NN |-> ( ( _pi / 2 ) x. ( 1 / ( seq 1 ( x. , F ) ` n ) ) ) ) ` j ) ) = ( ( 2 / _pi ) x. ( ( _pi / 2 ) x. ( 1 / ( seq 1 ( x. , F ) ` j ) ) ) ) ) |
| 134 | 122 128 133 | 3eqtr4d | |- ( j e. NN -> ( ( n e. NN |-> ( 1 / ( seq 1 ( x. , F ) ` n ) ) ) ` j ) = ( ( 2 / _pi ) x. ( ( n e. NN |-> ( ( _pi / 2 ) x. ( 1 / ( seq 1 ( x. , F ) ` n ) ) ) ) ` j ) ) ) |
| 135 | 134 | adantl | |- ( ( T. /\ j e. NN ) -> ( ( n e. NN |-> ( 1 / ( seq 1 ( x. , F ) ` n ) ) ) ` j ) = ( ( 2 / _pi ) x. ( ( n e. NN |-> ( ( _pi / 2 ) x. ( 1 / ( seq 1 ( x. , F ) ` n ) ) ) ) ` j ) ) ) |
| 136 | 3 4 10 18 21 105 135 | climmulc2 | |- ( T. -> ( n e. NN |-> ( 1 / ( seq 1 ( x. , F ) ` n ) ) ) ~~> ( ( 2 / _pi ) x. 1 ) ) |
| 137 | 2cn | |- 2 e. CC |
|
| 138 | 137 12 16 | divcli | |- ( 2 / _pi ) e. CC |
| 139 | 138 | mulridi | |- ( ( 2 / _pi ) x. 1 ) = ( 2 / _pi ) |
| 140 | 136 139 | breqtrdi | |- ( T. -> ( n e. NN |-> ( 1 / ( seq 1 ( x. , F ) ` n ) ) ) ~~> ( 2 / _pi ) ) |
| 141 | 2ne0 | |- 2 =/= 0 |
|
| 142 | 137 12 141 16 | divne0i | |- ( 2 / _pi ) =/= 0 |
| 143 | 142 | a1i | |- ( T. -> ( 2 / _pi ) =/= 0 ) |
| 144 | 128 120 | eqeltrd | |- ( j e. NN -> ( ( n e. NN |-> ( 1 / ( seq 1 ( x. , F ) ` n ) ) ) ` j ) e. CC ) |
| 145 | 109 110 | recne0d | |- ( j e. NN -> ( 1 / ( seq 1 ( x. , F ) ` j ) ) =/= 0 ) |
| 146 | 128 145 | eqnetrd | |- ( j e. NN -> ( ( n e. NN |-> ( 1 / ( seq 1 ( x. , F ) ` n ) ) ) ` j ) =/= 0 ) |
| 147 | nelsn | |- ( ( ( n e. NN |-> ( 1 / ( seq 1 ( x. , F ) ` n ) ) ) ` j ) =/= 0 -> -. ( ( n e. NN |-> ( 1 / ( seq 1 ( x. , F ) ` n ) ) ) ` j ) e. { 0 } ) |
|
| 148 | 146 147 | syl | |- ( j e. NN -> -. ( ( n e. NN |-> ( 1 / ( seq 1 ( x. , F ) ` n ) ) ) ` j ) e. { 0 } ) |
| 149 | 144 148 | eldifd | |- ( j e. NN -> ( ( n e. NN |-> ( 1 / ( seq 1 ( x. , F ) ` n ) ) ) ` j ) e. ( CC \ { 0 } ) ) |
| 150 | 149 | adantl | |- ( ( T. /\ j e. NN ) -> ( ( n e. NN |-> ( 1 / ( seq 1 ( x. , F ) ` n ) ) ) ` j ) e. ( CC \ { 0 } ) ) |
| 151 | 109 110 | recrecd | |- ( j e. NN -> ( 1 / ( 1 / ( seq 1 ( x. , F ) ` j ) ) ) = ( seq 1 ( x. , F ) ` j ) ) |
| 152 | 123 125 126 120 | fvmptd | |- ( j e. NN -> ( ( n e. NN |-> ( 1 / ( seq 1 ( x. , F ) ` n ) ) ) ` j ) = ( 1 / ( seq 1 ( x. , F ) ` j ) ) ) |
| 153 | 152 | oveq2d | |- ( j e. NN -> ( 1 / ( ( n e. NN |-> ( 1 / ( seq 1 ( x. , F ) ` n ) ) ) ` j ) ) = ( 1 / ( 1 / ( seq 1 ( x. , F ) ` j ) ) ) ) |
| 154 | 106 2 98 | fvmpt3 | |- ( j e. NN -> ( W ` j ) = ( seq 1 ( x. , F ) ` j ) ) |
| 155 | 151 153 154 | 3eqtr4rd | |- ( j e. NN -> ( W ` j ) = ( 1 / ( ( n e. NN |-> ( 1 / ( seq 1 ( x. , F ) ` n ) ) ) ` j ) ) ) |
| 156 | 155 | adantl | |- ( ( T. /\ j e. NN ) -> ( W ` j ) = ( 1 / ( ( n e. NN |-> ( 1 / ( seq 1 ( x. , F ) ` n ) ) ) ` j ) ) ) |
| 157 | 19 | mptex | |- ( n e. NN |-> ( seq 1 ( x. , F ) ` n ) ) e. _V |
| 158 | 2 157 | eqeltri | |- W e. _V |
| 159 | 158 | a1i | |- ( T. -> W e. _V ) |
| 160 | 3 4 140 143 150 156 159 | climrec | |- ( T. -> W ~~> ( 1 / ( 2 / _pi ) ) ) |
| 161 | 160 | mptru | |- W ~~> ( 1 / ( 2 / _pi ) ) |
| 162 | recdiv | |- ( ( ( 2 e. CC /\ 2 =/= 0 ) /\ ( _pi e. CC /\ _pi =/= 0 ) ) -> ( 1 / ( 2 / _pi ) ) = ( _pi / 2 ) ) |
|
| 163 | 137 141 12 16 162 | mp4an | |- ( 1 / ( 2 / _pi ) ) = ( _pi / 2 ) |
| 164 | 161 163 | breqtri | |- W ~~> ( _pi / 2 ) |