This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of addition of rationals. (Contributed by NM, 1-Aug-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | qaddcl | ⊢ ( ( 𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ) → ( 𝐴 + 𝐵 ) ∈ ℚ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elq | ⊢ ( 𝐴 ∈ ℚ ↔ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ 𝐴 = ( 𝑥 / 𝑦 ) ) | |
| 2 | elq | ⊢ ( 𝐵 ∈ ℚ ↔ ∃ 𝑧 ∈ ℤ ∃ 𝑤 ∈ ℕ 𝐵 = ( 𝑧 / 𝑤 ) ) | |
| 3 | nnz | ⊢ ( 𝑤 ∈ ℕ → 𝑤 ∈ ℤ ) | |
| 4 | zmulcl | ⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑤 ∈ ℤ ) → ( 𝑥 · 𝑤 ) ∈ ℤ ) | |
| 5 | 3 4 | sylan2 | ⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑤 ∈ ℕ ) → ( 𝑥 · 𝑤 ) ∈ ℤ ) |
| 6 | 5 | ad2ant2rl | ⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ ) ) → ( 𝑥 · 𝑤 ) ∈ ℤ ) |
| 7 | simpl | ⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ ) → 𝑧 ∈ ℤ ) | |
| 8 | nnz | ⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℤ ) | |
| 9 | 8 | adantl | ⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) → 𝑦 ∈ ℤ ) |
| 10 | zmulcl | ⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → ( 𝑧 · 𝑦 ) ∈ ℤ ) | |
| 11 | 7 9 10 | syl2anr | ⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ ) ) → ( 𝑧 · 𝑦 ) ∈ ℤ ) |
| 12 | 6 11 | zaddcld | ⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ ) ) → ( ( 𝑥 · 𝑤 ) + ( 𝑧 · 𝑦 ) ) ∈ ℤ ) |
| 13 | 12 | adantr | ⊢ ( ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ ) ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) → ( ( 𝑥 · 𝑤 ) + ( 𝑧 · 𝑦 ) ) ∈ ℤ ) |
| 14 | nnmulcl | ⊢ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) → ( 𝑦 · 𝑤 ) ∈ ℕ ) | |
| 15 | 14 | ad2ant2l | ⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ ) ) → ( 𝑦 · 𝑤 ) ∈ ℕ ) |
| 16 | 15 | adantr | ⊢ ( ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ ) ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) → ( 𝑦 · 𝑤 ) ∈ ℕ ) |
| 17 | oveq12 | ⊢ ( ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) → ( 𝐴 + 𝐵 ) = ( ( 𝑥 / 𝑦 ) + ( 𝑧 / 𝑤 ) ) ) | |
| 18 | zcn | ⊢ ( 𝑥 ∈ ℤ → 𝑥 ∈ ℂ ) | |
| 19 | zcn | ⊢ ( 𝑧 ∈ ℤ → 𝑧 ∈ ℂ ) | |
| 20 | 18 19 | anim12i | ⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) → ( 𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ) ) |
| 21 | nncn | ⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℂ ) | |
| 22 | nnne0 | ⊢ ( 𝑦 ∈ ℕ → 𝑦 ≠ 0 ) | |
| 23 | 21 22 | jca | ⊢ ( 𝑦 ∈ ℕ → ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) ) |
| 24 | nncn | ⊢ ( 𝑤 ∈ ℕ → 𝑤 ∈ ℂ ) | |
| 25 | nnne0 | ⊢ ( 𝑤 ∈ ℕ → 𝑤 ≠ 0 ) | |
| 26 | 24 25 | jca | ⊢ ( 𝑤 ∈ ℕ → ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ) |
| 27 | 23 26 | anim12i | ⊢ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) → ( ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) ∧ ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ) ) |
| 28 | divadddiv | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ) ∧ ( ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) ∧ ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ) ) → ( ( 𝑥 / 𝑦 ) + ( 𝑧 / 𝑤 ) ) = ( ( ( 𝑥 · 𝑤 ) + ( 𝑧 · 𝑦 ) ) / ( 𝑦 · 𝑤 ) ) ) | |
| 29 | 20 27 28 | syl2an | ⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ) → ( ( 𝑥 / 𝑦 ) + ( 𝑧 / 𝑤 ) ) = ( ( ( 𝑥 · 𝑤 ) + ( 𝑧 · 𝑦 ) ) / ( 𝑦 · 𝑤 ) ) ) |
| 30 | 29 | an4s | ⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ ) ) → ( ( 𝑥 / 𝑦 ) + ( 𝑧 / 𝑤 ) ) = ( ( ( 𝑥 · 𝑤 ) + ( 𝑧 · 𝑦 ) ) / ( 𝑦 · 𝑤 ) ) ) |
| 31 | 17 30 | sylan9eqr | ⊢ ( ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ ) ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) → ( 𝐴 + 𝐵 ) = ( ( ( 𝑥 · 𝑤 ) + ( 𝑧 · 𝑦 ) ) / ( 𝑦 · 𝑤 ) ) ) |
| 32 | rspceov | ⊢ ( ( ( ( 𝑥 · 𝑤 ) + ( 𝑧 · 𝑦 ) ) ∈ ℤ ∧ ( 𝑦 · 𝑤 ) ∈ ℕ ∧ ( 𝐴 + 𝐵 ) = ( ( ( 𝑥 · 𝑤 ) + ( 𝑧 · 𝑦 ) ) / ( 𝑦 · 𝑤 ) ) ) → ∃ 𝑢 ∈ ℤ ∃ 𝑣 ∈ ℕ ( 𝐴 + 𝐵 ) = ( 𝑢 / 𝑣 ) ) | |
| 33 | elq | ⊢ ( ( 𝐴 + 𝐵 ) ∈ ℚ ↔ ∃ 𝑢 ∈ ℤ ∃ 𝑣 ∈ ℕ ( 𝐴 + 𝐵 ) = ( 𝑢 / 𝑣 ) ) | |
| 34 | 32 33 | sylibr | ⊢ ( ( ( ( 𝑥 · 𝑤 ) + ( 𝑧 · 𝑦 ) ) ∈ ℤ ∧ ( 𝑦 · 𝑤 ) ∈ ℕ ∧ ( 𝐴 + 𝐵 ) = ( ( ( 𝑥 · 𝑤 ) + ( 𝑧 · 𝑦 ) ) / ( 𝑦 · 𝑤 ) ) ) → ( 𝐴 + 𝐵 ) ∈ ℚ ) |
| 35 | 13 16 31 34 | syl3anc | ⊢ ( ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ ) ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) → ( 𝐴 + 𝐵 ) ∈ ℚ ) |
| 36 | 35 | an4s | ⊢ ( ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ∧ 𝐴 = ( 𝑥 / 𝑦 ) ) ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) → ( 𝐴 + 𝐵 ) ∈ ℚ ) |
| 37 | 36 | exp43 | ⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) → ( 𝐴 = ( 𝑥 / 𝑦 ) → ( ( 𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ ) → ( 𝐵 = ( 𝑧 / 𝑤 ) → ( 𝐴 + 𝐵 ) ∈ ℚ ) ) ) ) |
| 38 | 37 | rexlimivv | ⊢ ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ 𝐴 = ( 𝑥 / 𝑦 ) → ( ( 𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ ) → ( 𝐵 = ( 𝑧 / 𝑤 ) → ( 𝐴 + 𝐵 ) ∈ ℚ ) ) ) |
| 39 | 38 | rexlimdvv | ⊢ ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ 𝐴 = ( 𝑥 / 𝑦 ) → ( ∃ 𝑧 ∈ ℤ ∃ 𝑤 ∈ ℕ 𝐵 = ( 𝑧 / 𝑤 ) → ( 𝐴 + 𝐵 ) ∈ ℚ ) ) |
| 40 | 39 | imp | ⊢ ( ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ 𝐴 = ( 𝑥 / 𝑦 ) ∧ ∃ 𝑧 ∈ ℤ ∃ 𝑤 ∈ ℕ 𝐵 = ( 𝑧 / 𝑤 ) ) → ( 𝐴 + 𝐵 ) ∈ ℚ ) |
| 41 | 1 2 40 | syl2anb | ⊢ ( ( 𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ) → ( 𝐴 + 𝐵 ) ∈ ℚ ) |