This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A reflexive, symmetric, transitive relation is an equivalence relation on its domain. Inference version of iserd , which avoids the need to provide a "dummy antecedent" ph if there is no natural one to choose. (Contributed by AV, 30-Apr-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iseri.1 | ⊢ Rel 𝑅 | |
| iseri.2 | ⊢ ( 𝑥 𝑅 𝑦 → 𝑦 𝑅 𝑥 ) | ||
| iseri.3 | ⊢ ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) | ||
| iseri.4 | ⊢ ( 𝑥 ∈ 𝐴 ↔ 𝑥 𝑅 𝑥 ) | ||
| Assertion | iseri | ⊢ 𝑅 Er 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iseri.1 | ⊢ Rel 𝑅 | |
| 2 | iseri.2 | ⊢ ( 𝑥 𝑅 𝑦 → 𝑦 𝑅 𝑥 ) | |
| 3 | iseri.3 | ⊢ ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) | |
| 4 | iseri.4 | ⊢ ( 𝑥 ∈ 𝐴 ↔ 𝑥 𝑅 𝑥 ) | |
| 5 | 1 | a1i | ⊢ ( ⊤ → Rel 𝑅 ) |
| 6 | 2 | adantl | ⊢ ( ( ⊤ ∧ 𝑥 𝑅 𝑦 ) → 𝑦 𝑅 𝑥 ) |
| 7 | 3 | adantl | ⊢ ( ( ⊤ ∧ ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) ) → 𝑥 𝑅 𝑧 ) |
| 8 | 4 | a1i | ⊢ ( ⊤ → ( 𝑥 ∈ 𝐴 ↔ 𝑥 𝑅 𝑥 ) ) |
| 9 | 5 6 7 8 | iserd | ⊢ ( ⊤ → 𝑅 Er 𝐴 ) |
| 10 | 9 | mptru | ⊢ 𝑅 Er 𝐴 |