This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure law for the negative of a rational. (Contributed by NM, 2-Aug-2004) (Revised by Mario Carneiro, 15-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | qnegcl | ⊢ ( 𝐴 ∈ ℚ → - 𝐴 ∈ ℚ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elq | ⊢ ( 𝐴 ∈ ℚ ↔ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ 𝐴 = ( 𝑥 / 𝑦 ) ) | |
| 2 | zcn | ⊢ ( 𝑥 ∈ ℤ → 𝑥 ∈ ℂ ) | |
| 3 | 2 | adantr | ⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) → 𝑥 ∈ ℂ ) |
| 4 | nncn | ⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℂ ) | |
| 5 | 4 | adantl | ⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) → 𝑦 ∈ ℂ ) |
| 6 | nnne0 | ⊢ ( 𝑦 ∈ ℕ → 𝑦 ≠ 0 ) | |
| 7 | 6 | adantl | ⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) → 𝑦 ≠ 0 ) |
| 8 | 3 5 7 | divnegd | ⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) → - ( 𝑥 / 𝑦 ) = ( - 𝑥 / 𝑦 ) ) |
| 9 | znegcl | ⊢ ( 𝑥 ∈ ℤ → - 𝑥 ∈ ℤ ) | |
| 10 | znq | ⊢ ( ( - 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) → ( - 𝑥 / 𝑦 ) ∈ ℚ ) | |
| 11 | 9 10 | sylan | ⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) → ( - 𝑥 / 𝑦 ) ∈ ℚ ) |
| 12 | 8 11 | eqeltrd | ⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) → - ( 𝑥 / 𝑦 ) ∈ ℚ ) |
| 13 | negeq | ⊢ ( 𝐴 = ( 𝑥 / 𝑦 ) → - 𝐴 = - ( 𝑥 / 𝑦 ) ) | |
| 14 | 13 | eleq1d | ⊢ ( 𝐴 = ( 𝑥 / 𝑦 ) → ( - 𝐴 ∈ ℚ ↔ - ( 𝑥 / 𝑦 ) ∈ ℚ ) ) |
| 15 | 12 14 | syl5ibrcom | ⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) → ( 𝐴 = ( 𝑥 / 𝑦 ) → - 𝐴 ∈ ℚ ) ) |
| 16 | 15 | rexlimivv | ⊢ ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ 𝐴 = ( 𝑥 / 𝑦 ) → - 𝐴 ∈ ℚ ) |
| 17 | 1 16 | sylbi | ⊢ ( 𝐴 ∈ ℚ → - 𝐴 ∈ ℚ ) |