This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Well-ordering principle: any nonempty subset of an upper set of integers has a unique least element. This generalization of uzwo2 allows the lower bound B to be any real number. See also nnwo and nnwos . (Contributed by NM, 12-Nov-2004) (Proof shortened by Mario Carneiro, 2-Oct-2015) (Proof shortened by AV, 27-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | uzwo3 | ⊢ ( ( 𝐵 ∈ ℝ ∧ ( 𝐴 ⊆ { 𝑧 ∈ ℤ ∣ 𝐵 ≤ 𝑧 } ∧ 𝐴 ≠ ∅ ) ) → ∃! 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | renegcl | ⊢ ( 𝐵 ∈ ℝ → - 𝐵 ∈ ℝ ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝐵 ∈ ℝ ∧ ( 𝐴 ⊆ { 𝑧 ∈ ℤ ∣ 𝐵 ≤ 𝑧 } ∧ 𝐴 ≠ ∅ ) ) → - 𝐵 ∈ ℝ ) |
| 3 | arch | ⊢ ( - 𝐵 ∈ ℝ → ∃ 𝑛 ∈ ℕ - 𝐵 < 𝑛 ) | |
| 4 | 2 3 | syl | ⊢ ( ( 𝐵 ∈ ℝ ∧ ( 𝐴 ⊆ { 𝑧 ∈ ℤ ∣ 𝐵 ≤ 𝑧 } ∧ 𝐴 ≠ ∅ ) ) → ∃ 𝑛 ∈ ℕ - 𝐵 < 𝑛 ) |
| 5 | simplrl | ⊢ ( ( ( 𝐵 ∈ ℝ ∧ ( 𝐴 ⊆ { 𝑧 ∈ ℤ ∣ 𝐵 ≤ 𝑧 } ∧ 𝐴 ≠ ∅ ) ) ∧ ( 𝑛 ∈ ℕ ∧ - 𝐵 < 𝑛 ) ) → 𝐴 ⊆ { 𝑧 ∈ ℤ ∣ 𝐵 ≤ 𝑧 } ) | |
| 6 | simplrl | ⊢ ( ( ( 𝐵 ∈ ℝ ∧ ( 𝑛 ∈ ℕ ∧ - 𝐵 < 𝑛 ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝐵 ≤ 𝑧 ) ) → 𝑛 ∈ ℕ ) | |
| 7 | nnnegz | ⊢ ( 𝑛 ∈ ℕ → - 𝑛 ∈ ℤ ) | |
| 8 | 6 7 | syl | ⊢ ( ( ( 𝐵 ∈ ℝ ∧ ( 𝑛 ∈ ℕ ∧ - 𝐵 < 𝑛 ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝐵 ≤ 𝑧 ) ) → - 𝑛 ∈ ℤ ) |
| 9 | 8 | zred | ⊢ ( ( ( 𝐵 ∈ ℝ ∧ ( 𝑛 ∈ ℕ ∧ - 𝐵 < 𝑛 ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝐵 ≤ 𝑧 ) ) → - 𝑛 ∈ ℝ ) |
| 10 | simprl | ⊢ ( ( ( 𝐵 ∈ ℝ ∧ ( 𝑛 ∈ ℕ ∧ - 𝐵 < 𝑛 ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝐵 ≤ 𝑧 ) ) → 𝑧 ∈ ℤ ) | |
| 11 | 10 | zred | ⊢ ( ( ( 𝐵 ∈ ℝ ∧ ( 𝑛 ∈ ℕ ∧ - 𝐵 < 𝑛 ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝐵 ≤ 𝑧 ) ) → 𝑧 ∈ ℝ ) |
| 12 | simpll | ⊢ ( ( ( 𝐵 ∈ ℝ ∧ ( 𝑛 ∈ ℕ ∧ - 𝐵 < 𝑛 ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝐵 ≤ 𝑧 ) ) → 𝐵 ∈ ℝ ) | |
| 13 | 6 | nnred | ⊢ ( ( ( 𝐵 ∈ ℝ ∧ ( 𝑛 ∈ ℕ ∧ - 𝐵 < 𝑛 ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝐵 ≤ 𝑧 ) ) → 𝑛 ∈ ℝ ) |
| 14 | simplrr | ⊢ ( ( ( 𝐵 ∈ ℝ ∧ ( 𝑛 ∈ ℕ ∧ - 𝐵 < 𝑛 ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝐵 ≤ 𝑧 ) ) → - 𝐵 < 𝑛 ) | |
| 15 | 12 13 14 | ltnegcon1d | ⊢ ( ( ( 𝐵 ∈ ℝ ∧ ( 𝑛 ∈ ℕ ∧ - 𝐵 < 𝑛 ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝐵 ≤ 𝑧 ) ) → - 𝑛 < 𝐵 ) |
| 16 | simprr | ⊢ ( ( ( 𝐵 ∈ ℝ ∧ ( 𝑛 ∈ ℕ ∧ - 𝐵 < 𝑛 ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝐵 ≤ 𝑧 ) ) → 𝐵 ≤ 𝑧 ) | |
| 17 | 9 12 11 15 16 | ltletrd | ⊢ ( ( ( 𝐵 ∈ ℝ ∧ ( 𝑛 ∈ ℕ ∧ - 𝐵 < 𝑛 ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝐵 ≤ 𝑧 ) ) → - 𝑛 < 𝑧 ) |
| 18 | 9 11 17 | ltled | ⊢ ( ( ( 𝐵 ∈ ℝ ∧ ( 𝑛 ∈ ℕ ∧ - 𝐵 < 𝑛 ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝐵 ≤ 𝑧 ) ) → - 𝑛 ≤ 𝑧 ) |
| 19 | eluz | ⊢ ( ( - 𝑛 ∈ ℤ ∧ 𝑧 ∈ ℤ ) → ( 𝑧 ∈ ( ℤ≥ ‘ - 𝑛 ) ↔ - 𝑛 ≤ 𝑧 ) ) | |
| 20 | 8 10 19 | syl2anc | ⊢ ( ( ( 𝐵 ∈ ℝ ∧ ( 𝑛 ∈ ℕ ∧ - 𝐵 < 𝑛 ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝐵 ≤ 𝑧 ) ) → ( 𝑧 ∈ ( ℤ≥ ‘ - 𝑛 ) ↔ - 𝑛 ≤ 𝑧 ) ) |
| 21 | 18 20 | mpbird | ⊢ ( ( ( 𝐵 ∈ ℝ ∧ ( 𝑛 ∈ ℕ ∧ - 𝐵 < 𝑛 ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝐵 ≤ 𝑧 ) ) → 𝑧 ∈ ( ℤ≥ ‘ - 𝑛 ) ) |
| 22 | 21 | expr | ⊢ ( ( ( 𝐵 ∈ ℝ ∧ ( 𝑛 ∈ ℕ ∧ - 𝐵 < 𝑛 ) ) ∧ 𝑧 ∈ ℤ ) → ( 𝐵 ≤ 𝑧 → 𝑧 ∈ ( ℤ≥ ‘ - 𝑛 ) ) ) |
| 23 | 22 | ralrimiva | ⊢ ( ( 𝐵 ∈ ℝ ∧ ( 𝑛 ∈ ℕ ∧ - 𝐵 < 𝑛 ) ) → ∀ 𝑧 ∈ ℤ ( 𝐵 ≤ 𝑧 → 𝑧 ∈ ( ℤ≥ ‘ - 𝑛 ) ) ) |
| 24 | rabss | ⊢ ( { 𝑧 ∈ ℤ ∣ 𝐵 ≤ 𝑧 } ⊆ ( ℤ≥ ‘ - 𝑛 ) ↔ ∀ 𝑧 ∈ ℤ ( 𝐵 ≤ 𝑧 → 𝑧 ∈ ( ℤ≥ ‘ - 𝑛 ) ) ) | |
| 25 | 23 24 | sylibr | ⊢ ( ( 𝐵 ∈ ℝ ∧ ( 𝑛 ∈ ℕ ∧ - 𝐵 < 𝑛 ) ) → { 𝑧 ∈ ℤ ∣ 𝐵 ≤ 𝑧 } ⊆ ( ℤ≥ ‘ - 𝑛 ) ) |
| 26 | 25 | adantlr | ⊢ ( ( ( 𝐵 ∈ ℝ ∧ ( 𝐴 ⊆ { 𝑧 ∈ ℤ ∣ 𝐵 ≤ 𝑧 } ∧ 𝐴 ≠ ∅ ) ) ∧ ( 𝑛 ∈ ℕ ∧ - 𝐵 < 𝑛 ) ) → { 𝑧 ∈ ℤ ∣ 𝐵 ≤ 𝑧 } ⊆ ( ℤ≥ ‘ - 𝑛 ) ) |
| 27 | 5 26 | sstrd | ⊢ ( ( ( 𝐵 ∈ ℝ ∧ ( 𝐴 ⊆ { 𝑧 ∈ ℤ ∣ 𝐵 ≤ 𝑧 } ∧ 𝐴 ≠ ∅ ) ) ∧ ( 𝑛 ∈ ℕ ∧ - 𝐵 < 𝑛 ) ) → 𝐴 ⊆ ( ℤ≥ ‘ - 𝑛 ) ) |
| 28 | simplrr | ⊢ ( ( ( 𝐵 ∈ ℝ ∧ ( 𝐴 ⊆ { 𝑧 ∈ ℤ ∣ 𝐵 ≤ 𝑧 } ∧ 𝐴 ≠ ∅ ) ) ∧ ( 𝑛 ∈ ℕ ∧ - 𝐵 < 𝑛 ) ) → 𝐴 ≠ ∅ ) | |
| 29 | infssuzcl | ⊢ ( ( 𝐴 ⊆ ( ℤ≥ ‘ - 𝑛 ) ∧ 𝐴 ≠ ∅ ) → inf ( 𝐴 , ℝ , < ) ∈ 𝐴 ) | |
| 30 | 27 28 29 | syl2anc | ⊢ ( ( ( 𝐵 ∈ ℝ ∧ ( 𝐴 ⊆ { 𝑧 ∈ ℤ ∣ 𝐵 ≤ 𝑧 } ∧ 𝐴 ≠ ∅ ) ) ∧ ( 𝑛 ∈ ℕ ∧ - 𝐵 < 𝑛 ) ) → inf ( 𝐴 , ℝ , < ) ∈ 𝐴 ) |
| 31 | infssuzle | ⊢ ( ( 𝐴 ⊆ ( ℤ≥ ‘ - 𝑛 ) ∧ 𝑦 ∈ 𝐴 ) → inf ( 𝐴 , ℝ , < ) ≤ 𝑦 ) | |
| 32 | 27 31 | sylan | ⊢ ( ( ( ( 𝐵 ∈ ℝ ∧ ( 𝐴 ⊆ { 𝑧 ∈ ℤ ∣ 𝐵 ≤ 𝑧 } ∧ 𝐴 ≠ ∅ ) ) ∧ ( 𝑛 ∈ ℕ ∧ - 𝐵 < 𝑛 ) ) ∧ 𝑦 ∈ 𝐴 ) → inf ( 𝐴 , ℝ , < ) ≤ 𝑦 ) |
| 33 | 32 | ralrimiva | ⊢ ( ( ( 𝐵 ∈ ℝ ∧ ( 𝐴 ⊆ { 𝑧 ∈ ℤ ∣ 𝐵 ≤ 𝑧 } ∧ 𝐴 ≠ ∅ ) ) ∧ ( 𝑛 ∈ ℕ ∧ - 𝐵 < 𝑛 ) ) → ∀ 𝑦 ∈ 𝐴 inf ( 𝐴 , ℝ , < ) ≤ 𝑦 ) |
| 34 | breq2 | ⊢ ( 𝑦 = inf ( 𝐴 , ℝ , < ) → ( 𝑥 ≤ 𝑦 ↔ 𝑥 ≤ inf ( 𝐴 , ℝ , < ) ) ) | |
| 35 | simprr | ⊢ ( ( ( ( 𝐵 ∈ ℝ ∧ ( 𝐴 ⊆ { 𝑧 ∈ ℤ ∣ 𝐵 ≤ 𝑧 } ∧ 𝐴 ≠ ∅ ) ) ∧ ( 𝑛 ∈ ℕ ∧ - 𝐵 < 𝑛 ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) ) → ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) | |
| 36 | 30 | adantr | ⊢ ( ( ( ( 𝐵 ∈ ℝ ∧ ( 𝐴 ⊆ { 𝑧 ∈ ℤ ∣ 𝐵 ≤ 𝑧 } ∧ 𝐴 ≠ ∅ ) ) ∧ ( 𝑛 ∈ ℕ ∧ - 𝐵 < 𝑛 ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) ) → inf ( 𝐴 , ℝ , < ) ∈ 𝐴 ) |
| 37 | 34 35 36 | rspcdva | ⊢ ( ( ( ( 𝐵 ∈ ℝ ∧ ( 𝐴 ⊆ { 𝑧 ∈ ℤ ∣ 𝐵 ≤ 𝑧 } ∧ 𝐴 ≠ ∅ ) ) ∧ ( 𝑛 ∈ ℕ ∧ - 𝐵 < 𝑛 ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) ) → 𝑥 ≤ inf ( 𝐴 , ℝ , < ) ) |
| 38 | 27 | adantr | ⊢ ( ( ( ( 𝐵 ∈ ℝ ∧ ( 𝐴 ⊆ { 𝑧 ∈ ℤ ∣ 𝐵 ≤ 𝑧 } ∧ 𝐴 ≠ ∅ ) ) ∧ ( 𝑛 ∈ ℕ ∧ - 𝐵 < 𝑛 ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) ) → 𝐴 ⊆ ( ℤ≥ ‘ - 𝑛 ) ) |
| 39 | simprl | ⊢ ( ( ( ( 𝐵 ∈ ℝ ∧ ( 𝐴 ⊆ { 𝑧 ∈ ℤ ∣ 𝐵 ≤ 𝑧 } ∧ 𝐴 ≠ ∅ ) ) ∧ ( 𝑛 ∈ ℕ ∧ - 𝐵 < 𝑛 ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) ) → 𝑥 ∈ 𝐴 ) | |
| 40 | infssuzle | ⊢ ( ( 𝐴 ⊆ ( ℤ≥ ‘ - 𝑛 ) ∧ 𝑥 ∈ 𝐴 ) → inf ( 𝐴 , ℝ , < ) ≤ 𝑥 ) | |
| 41 | 38 39 40 | syl2anc | ⊢ ( ( ( ( 𝐵 ∈ ℝ ∧ ( 𝐴 ⊆ { 𝑧 ∈ ℤ ∣ 𝐵 ≤ 𝑧 } ∧ 𝐴 ≠ ∅ ) ) ∧ ( 𝑛 ∈ ℕ ∧ - 𝐵 < 𝑛 ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) ) → inf ( 𝐴 , ℝ , < ) ≤ 𝑥 ) |
| 42 | uzssz | ⊢ ( ℤ≥ ‘ - 𝑛 ) ⊆ ℤ | |
| 43 | zssre | ⊢ ℤ ⊆ ℝ | |
| 44 | 42 43 | sstri | ⊢ ( ℤ≥ ‘ - 𝑛 ) ⊆ ℝ |
| 45 | 27 44 | sstrdi | ⊢ ( ( ( 𝐵 ∈ ℝ ∧ ( 𝐴 ⊆ { 𝑧 ∈ ℤ ∣ 𝐵 ≤ 𝑧 } ∧ 𝐴 ≠ ∅ ) ) ∧ ( 𝑛 ∈ ℕ ∧ - 𝐵 < 𝑛 ) ) → 𝐴 ⊆ ℝ ) |
| 46 | 45 | adantr | ⊢ ( ( ( ( 𝐵 ∈ ℝ ∧ ( 𝐴 ⊆ { 𝑧 ∈ ℤ ∣ 𝐵 ≤ 𝑧 } ∧ 𝐴 ≠ ∅ ) ) ∧ ( 𝑛 ∈ ℕ ∧ - 𝐵 < 𝑛 ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) ) → 𝐴 ⊆ ℝ ) |
| 47 | 46 39 | sseldd | ⊢ ( ( ( ( 𝐵 ∈ ℝ ∧ ( 𝐴 ⊆ { 𝑧 ∈ ℤ ∣ 𝐵 ≤ 𝑧 } ∧ 𝐴 ≠ ∅ ) ) ∧ ( 𝑛 ∈ ℕ ∧ - 𝐵 < 𝑛 ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) ) → 𝑥 ∈ ℝ ) |
| 48 | 45 30 | sseldd | ⊢ ( ( ( 𝐵 ∈ ℝ ∧ ( 𝐴 ⊆ { 𝑧 ∈ ℤ ∣ 𝐵 ≤ 𝑧 } ∧ 𝐴 ≠ ∅ ) ) ∧ ( 𝑛 ∈ ℕ ∧ - 𝐵 < 𝑛 ) ) → inf ( 𝐴 , ℝ , < ) ∈ ℝ ) |
| 49 | 48 | adantr | ⊢ ( ( ( ( 𝐵 ∈ ℝ ∧ ( 𝐴 ⊆ { 𝑧 ∈ ℤ ∣ 𝐵 ≤ 𝑧 } ∧ 𝐴 ≠ ∅ ) ) ∧ ( 𝑛 ∈ ℕ ∧ - 𝐵 < 𝑛 ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) ) → inf ( 𝐴 , ℝ , < ) ∈ ℝ ) |
| 50 | 47 49 | letri3d | ⊢ ( ( ( ( 𝐵 ∈ ℝ ∧ ( 𝐴 ⊆ { 𝑧 ∈ ℤ ∣ 𝐵 ≤ 𝑧 } ∧ 𝐴 ≠ ∅ ) ) ∧ ( 𝑛 ∈ ℕ ∧ - 𝐵 < 𝑛 ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) ) → ( 𝑥 = inf ( 𝐴 , ℝ , < ) ↔ ( 𝑥 ≤ inf ( 𝐴 , ℝ , < ) ∧ inf ( 𝐴 , ℝ , < ) ≤ 𝑥 ) ) ) |
| 51 | 37 41 50 | mpbir2and | ⊢ ( ( ( ( 𝐵 ∈ ℝ ∧ ( 𝐴 ⊆ { 𝑧 ∈ ℤ ∣ 𝐵 ≤ 𝑧 } ∧ 𝐴 ≠ ∅ ) ) ∧ ( 𝑛 ∈ ℕ ∧ - 𝐵 < 𝑛 ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) ) → 𝑥 = inf ( 𝐴 , ℝ , < ) ) |
| 52 | 51 | expr | ⊢ ( ( ( ( 𝐵 ∈ ℝ ∧ ( 𝐴 ⊆ { 𝑧 ∈ ℤ ∣ 𝐵 ≤ 𝑧 } ∧ 𝐴 ≠ ∅ ) ) ∧ ( 𝑛 ∈ ℕ ∧ - 𝐵 < 𝑛 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 → 𝑥 = inf ( 𝐴 , ℝ , < ) ) ) |
| 53 | 52 | ralrimiva | ⊢ ( ( ( 𝐵 ∈ ℝ ∧ ( 𝐴 ⊆ { 𝑧 ∈ ℤ ∣ 𝐵 ≤ 𝑧 } ∧ 𝐴 ≠ ∅ ) ) ∧ ( 𝑛 ∈ ℕ ∧ - 𝐵 < 𝑛 ) ) → ∀ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 → 𝑥 = inf ( 𝐴 , ℝ , < ) ) ) |
| 54 | breq1 | ⊢ ( 𝑥 = inf ( 𝐴 , ℝ , < ) → ( 𝑥 ≤ 𝑦 ↔ inf ( 𝐴 , ℝ , < ) ≤ 𝑦 ) ) | |
| 55 | 54 | ralbidv | ⊢ ( 𝑥 = inf ( 𝐴 , ℝ , < ) → ( ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ↔ ∀ 𝑦 ∈ 𝐴 inf ( 𝐴 , ℝ , < ) ≤ 𝑦 ) ) |
| 56 | 55 | eqreu | ⊢ ( ( inf ( 𝐴 , ℝ , < ) ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 inf ( 𝐴 , ℝ , < ) ≤ 𝑦 ∧ ∀ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 → 𝑥 = inf ( 𝐴 , ℝ , < ) ) ) → ∃! 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) |
| 57 | 30 33 53 56 | syl3anc | ⊢ ( ( ( 𝐵 ∈ ℝ ∧ ( 𝐴 ⊆ { 𝑧 ∈ ℤ ∣ 𝐵 ≤ 𝑧 } ∧ 𝐴 ≠ ∅ ) ) ∧ ( 𝑛 ∈ ℕ ∧ - 𝐵 < 𝑛 ) ) → ∃! 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) |
| 58 | 4 57 | rexlimddv | ⊢ ( ( 𝐵 ∈ ℝ ∧ ( 𝐴 ⊆ { 𝑧 ∈ ℤ ∣ 𝐵 ≤ 𝑧 } ∧ 𝐴 ≠ ∅ ) ) → ∃! 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) |