This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: There is a unique smallest integer greater than or equal to a given real number. (Contributed by NM, 12-Nov-2004) (Revised by Mario Carneiro, 13-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | zmin | ⊢ ( 𝐴 ∈ ℝ → ∃! 𝑥 ∈ ℤ ( 𝐴 ≤ 𝑥 ∧ ∀ 𝑦 ∈ ℤ ( 𝐴 ≤ 𝑦 → 𝑥 ≤ 𝑦 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnssz | ⊢ ℕ ⊆ ℤ | |
| 2 | arch | ⊢ ( 𝐴 ∈ ℝ → ∃ 𝑧 ∈ ℕ 𝐴 < 𝑧 ) | |
| 3 | ssrexv | ⊢ ( ℕ ⊆ ℤ → ( ∃ 𝑧 ∈ ℕ 𝐴 < 𝑧 → ∃ 𝑧 ∈ ℤ 𝐴 < 𝑧 ) ) | |
| 4 | 1 2 3 | mpsyl | ⊢ ( 𝐴 ∈ ℝ → ∃ 𝑧 ∈ ℤ 𝐴 < 𝑧 ) |
| 5 | zre | ⊢ ( 𝑧 ∈ ℤ → 𝑧 ∈ ℝ ) | |
| 6 | ltle | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑧 ∈ ℝ ) → ( 𝐴 < 𝑧 → 𝐴 ≤ 𝑧 ) ) | |
| 7 | 5 6 | sylan2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑧 ∈ ℤ ) → ( 𝐴 < 𝑧 → 𝐴 ≤ 𝑧 ) ) |
| 8 | 7 | reximdva | ⊢ ( 𝐴 ∈ ℝ → ( ∃ 𝑧 ∈ ℤ 𝐴 < 𝑧 → ∃ 𝑧 ∈ ℤ 𝐴 ≤ 𝑧 ) ) |
| 9 | 4 8 | mpd | ⊢ ( 𝐴 ∈ ℝ → ∃ 𝑧 ∈ ℤ 𝐴 ≤ 𝑧 ) |
| 10 | rabn0 | ⊢ ( { 𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧 } ≠ ∅ ↔ ∃ 𝑧 ∈ ℤ 𝐴 ≤ 𝑧 ) | |
| 11 | 9 10 | sylibr | ⊢ ( 𝐴 ∈ ℝ → { 𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧 } ≠ ∅ ) |
| 12 | breq2 | ⊢ ( 𝑧 = 𝑛 → ( 𝐴 ≤ 𝑧 ↔ 𝐴 ≤ 𝑛 ) ) | |
| 13 | 12 | cbvrabv | ⊢ { 𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧 } = { 𝑛 ∈ ℤ ∣ 𝐴 ≤ 𝑛 } |
| 14 | 13 | eqimssi | ⊢ { 𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧 } ⊆ { 𝑛 ∈ ℤ ∣ 𝐴 ≤ 𝑛 } |
| 15 | uzwo3 | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( { 𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧 } ⊆ { 𝑛 ∈ ℤ ∣ 𝐴 ≤ 𝑛 } ∧ { 𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧 } ≠ ∅ ) ) → ∃! 𝑥 ∈ { 𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧 } ∀ 𝑦 ∈ { 𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧 } 𝑥 ≤ 𝑦 ) | |
| 16 | 14 15 | mpanr1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ { 𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧 } ≠ ∅ ) → ∃! 𝑥 ∈ { 𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧 } ∀ 𝑦 ∈ { 𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧 } 𝑥 ≤ 𝑦 ) |
| 17 | 11 16 | mpdan | ⊢ ( 𝐴 ∈ ℝ → ∃! 𝑥 ∈ { 𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧 } ∀ 𝑦 ∈ { 𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧 } 𝑥 ≤ 𝑦 ) |
| 18 | breq2 | ⊢ ( 𝑧 = 𝑥 → ( 𝐴 ≤ 𝑧 ↔ 𝐴 ≤ 𝑥 ) ) | |
| 19 | 18 | elrab | ⊢ ( 𝑥 ∈ { 𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧 } ↔ ( 𝑥 ∈ ℤ ∧ 𝐴 ≤ 𝑥 ) ) |
| 20 | breq2 | ⊢ ( 𝑧 = 𝑦 → ( 𝐴 ≤ 𝑧 ↔ 𝐴 ≤ 𝑦 ) ) | |
| 21 | 20 | ralrab | ⊢ ( ∀ 𝑦 ∈ { 𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧 } 𝑥 ≤ 𝑦 ↔ ∀ 𝑦 ∈ ℤ ( 𝐴 ≤ 𝑦 → 𝑥 ≤ 𝑦 ) ) |
| 22 | 19 21 | anbi12i | ⊢ ( ( 𝑥 ∈ { 𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧 } ∧ ∀ 𝑦 ∈ { 𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧 } 𝑥 ≤ 𝑦 ) ↔ ( ( 𝑥 ∈ ℤ ∧ 𝐴 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ ℤ ( 𝐴 ≤ 𝑦 → 𝑥 ≤ 𝑦 ) ) ) |
| 23 | anass | ⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝐴 ≤ 𝑥 ) ∧ ∀ 𝑦 ∈ ℤ ( 𝐴 ≤ 𝑦 → 𝑥 ≤ 𝑦 ) ) ↔ ( 𝑥 ∈ ℤ ∧ ( 𝐴 ≤ 𝑥 ∧ ∀ 𝑦 ∈ ℤ ( 𝐴 ≤ 𝑦 → 𝑥 ≤ 𝑦 ) ) ) ) | |
| 24 | 22 23 | bitri | ⊢ ( ( 𝑥 ∈ { 𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧 } ∧ ∀ 𝑦 ∈ { 𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧 } 𝑥 ≤ 𝑦 ) ↔ ( 𝑥 ∈ ℤ ∧ ( 𝐴 ≤ 𝑥 ∧ ∀ 𝑦 ∈ ℤ ( 𝐴 ≤ 𝑦 → 𝑥 ≤ 𝑦 ) ) ) ) |
| 25 | 24 | eubii | ⊢ ( ∃! 𝑥 ( 𝑥 ∈ { 𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧 } ∧ ∀ 𝑦 ∈ { 𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧 } 𝑥 ≤ 𝑦 ) ↔ ∃! 𝑥 ( 𝑥 ∈ ℤ ∧ ( 𝐴 ≤ 𝑥 ∧ ∀ 𝑦 ∈ ℤ ( 𝐴 ≤ 𝑦 → 𝑥 ≤ 𝑦 ) ) ) ) |
| 26 | df-reu | ⊢ ( ∃! 𝑥 ∈ { 𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧 } ∀ 𝑦 ∈ { 𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧 } 𝑥 ≤ 𝑦 ↔ ∃! 𝑥 ( 𝑥 ∈ { 𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧 } ∧ ∀ 𝑦 ∈ { 𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧 } 𝑥 ≤ 𝑦 ) ) | |
| 27 | df-reu | ⊢ ( ∃! 𝑥 ∈ ℤ ( 𝐴 ≤ 𝑥 ∧ ∀ 𝑦 ∈ ℤ ( 𝐴 ≤ 𝑦 → 𝑥 ≤ 𝑦 ) ) ↔ ∃! 𝑥 ( 𝑥 ∈ ℤ ∧ ( 𝐴 ≤ 𝑥 ∧ ∀ 𝑦 ∈ ℤ ( 𝐴 ≤ 𝑦 → 𝑥 ≤ 𝑦 ) ) ) ) | |
| 28 | 25 26 27 | 3bitr4i | ⊢ ( ∃! 𝑥 ∈ { 𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧 } ∀ 𝑦 ∈ { 𝑧 ∈ ℤ ∣ 𝐴 ≤ 𝑧 } 𝑥 ≤ 𝑦 ↔ ∃! 𝑥 ∈ ℤ ( 𝐴 ≤ 𝑥 ∧ ∀ 𝑦 ∈ ℤ ( 𝐴 ≤ 𝑦 → 𝑥 ≤ 𝑦 ) ) ) |
| 29 | 17 28 | sylib | ⊢ ( 𝐴 ∈ ℝ → ∃! 𝑥 ∈ ℤ ( 𝐴 ≤ 𝑥 ∧ ∀ 𝑦 ∈ ℤ ( 𝐴 ≤ 𝑦 → 𝑥 ≤ 𝑦 ) ) ) |