This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Well-ordering principle: any nonempty set of positive integers has a least element (schema form). (Contributed by NM, 17-Aug-2001)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | nnwos.1 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | |
| Assertion | nnwos | ⊢ ( ∃ 𝑥 ∈ ℕ 𝜑 → ∃ 𝑥 ∈ ℕ ( 𝜑 ∧ ∀ 𝑦 ∈ ℕ ( 𝜓 → 𝑥 ≤ 𝑦 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnwos.1 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | nfrab1 | ⊢ Ⅎ 𝑥 { 𝑥 ∈ ℕ ∣ 𝜑 } | |
| 3 | nfcv | ⊢ Ⅎ 𝑦 { 𝑥 ∈ ℕ ∣ 𝜑 } | |
| 4 | 2 3 | nnwof | ⊢ ( ( { 𝑥 ∈ ℕ ∣ 𝜑 } ⊆ ℕ ∧ { 𝑥 ∈ ℕ ∣ 𝜑 } ≠ ∅ ) → ∃ 𝑥 ∈ { 𝑥 ∈ ℕ ∣ 𝜑 } ∀ 𝑦 ∈ { 𝑥 ∈ ℕ ∣ 𝜑 } 𝑥 ≤ 𝑦 ) |
| 5 | ssrab2 | ⊢ { 𝑥 ∈ ℕ ∣ 𝜑 } ⊆ ℕ | |
| 6 | 5 | biantrur | ⊢ ( { 𝑥 ∈ ℕ ∣ 𝜑 } ≠ ∅ ↔ ( { 𝑥 ∈ ℕ ∣ 𝜑 } ⊆ ℕ ∧ { 𝑥 ∈ ℕ ∣ 𝜑 } ≠ ∅ ) ) |
| 7 | rabn0 | ⊢ ( { 𝑥 ∈ ℕ ∣ 𝜑 } ≠ ∅ ↔ ∃ 𝑥 ∈ ℕ 𝜑 ) | |
| 8 | 6 7 | bitr3i | ⊢ ( ( { 𝑥 ∈ ℕ ∣ 𝜑 } ⊆ ℕ ∧ { 𝑥 ∈ ℕ ∣ 𝜑 } ≠ ∅ ) ↔ ∃ 𝑥 ∈ ℕ 𝜑 ) |
| 9 | df-rex | ⊢ ( ∃ 𝑥 ∈ { 𝑥 ∈ ℕ ∣ 𝜑 } ∀ 𝑦 ∈ { 𝑥 ∈ ℕ ∣ 𝜑 } 𝑥 ≤ 𝑦 ↔ ∃ 𝑥 ( 𝑥 ∈ { 𝑥 ∈ ℕ ∣ 𝜑 } ∧ ∀ 𝑦 ∈ { 𝑥 ∈ ℕ ∣ 𝜑 } 𝑥 ≤ 𝑦 ) ) | |
| 10 | rabid | ⊢ ( 𝑥 ∈ { 𝑥 ∈ ℕ ∣ 𝜑 } ↔ ( 𝑥 ∈ ℕ ∧ 𝜑 ) ) | |
| 11 | df-ral | ⊢ ( ∀ 𝑦 ∈ { 𝑥 ∈ ℕ ∣ 𝜑 } 𝑥 ≤ 𝑦 ↔ ∀ 𝑦 ( 𝑦 ∈ { 𝑥 ∈ ℕ ∣ 𝜑 } → 𝑥 ≤ 𝑦 ) ) | |
| 12 | 1 | elrab | ⊢ ( 𝑦 ∈ { 𝑥 ∈ ℕ ∣ 𝜑 } ↔ ( 𝑦 ∈ ℕ ∧ 𝜓 ) ) |
| 13 | 12 | imbi1i | ⊢ ( ( 𝑦 ∈ { 𝑥 ∈ ℕ ∣ 𝜑 } → 𝑥 ≤ 𝑦 ) ↔ ( ( 𝑦 ∈ ℕ ∧ 𝜓 ) → 𝑥 ≤ 𝑦 ) ) |
| 14 | impexp | ⊢ ( ( ( 𝑦 ∈ ℕ ∧ 𝜓 ) → 𝑥 ≤ 𝑦 ) ↔ ( 𝑦 ∈ ℕ → ( 𝜓 → 𝑥 ≤ 𝑦 ) ) ) | |
| 15 | 13 14 | bitri | ⊢ ( ( 𝑦 ∈ { 𝑥 ∈ ℕ ∣ 𝜑 } → 𝑥 ≤ 𝑦 ) ↔ ( 𝑦 ∈ ℕ → ( 𝜓 → 𝑥 ≤ 𝑦 ) ) ) |
| 16 | 15 | albii | ⊢ ( ∀ 𝑦 ( 𝑦 ∈ { 𝑥 ∈ ℕ ∣ 𝜑 } → 𝑥 ≤ 𝑦 ) ↔ ∀ 𝑦 ( 𝑦 ∈ ℕ → ( 𝜓 → 𝑥 ≤ 𝑦 ) ) ) |
| 17 | 11 16 | bitri | ⊢ ( ∀ 𝑦 ∈ { 𝑥 ∈ ℕ ∣ 𝜑 } 𝑥 ≤ 𝑦 ↔ ∀ 𝑦 ( 𝑦 ∈ ℕ → ( 𝜓 → 𝑥 ≤ 𝑦 ) ) ) |
| 18 | 10 17 | anbi12i | ⊢ ( ( 𝑥 ∈ { 𝑥 ∈ ℕ ∣ 𝜑 } ∧ ∀ 𝑦 ∈ { 𝑥 ∈ ℕ ∣ 𝜑 } 𝑥 ≤ 𝑦 ) ↔ ( ( 𝑥 ∈ ℕ ∧ 𝜑 ) ∧ ∀ 𝑦 ( 𝑦 ∈ ℕ → ( 𝜓 → 𝑥 ≤ 𝑦 ) ) ) ) |
| 19 | 18 | exbii | ⊢ ( ∃ 𝑥 ( 𝑥 ∈ { 𝑥 ∈ ℕ ∣ 𝜑 } ∧ ∀ 𝑦 ∈ { 𝑥 ∈ ℕ ∣ 𝜑 } 𝑥 ≤ 𝑦 ) ↔ ∃ 𝑥 ( ( 𝑥 ∈ ℕ ∧ 𝜑 ) ∧ ∀ 𝑦 ( 𝑦 ∈ ℕ → ( 𝜓 → 𝑥 ≤ 𝑦 ) ) ) ) |
| 20 | df-ral | ⊢ ( ∀ 𝑦 ∈ ℕ ( 𝜓 → 𝑥 ≤ 𝑦 ) ↔ ∀ 𝑦 ( 𝑦 ∈ ℕ → ( 𝜓 → 𝑥 ≤ 𝑦 ) ) ) | |
| 21 | 20 | anbi2i | ⊢ ( ( ( 𝑥 ∈ ℕ ∧ 𝜑 ) ∧ ∀ 𝑦 ∈ ℕ ( 𝜓 → 𝑥 ≤ 𝑦 ) ) ↔ ( ( 𝑥 ∈ ℕ ∧ 𝜑 ) ∧ ∀ 𝑦 ( 𝑦 ∈ ℕ → ( 𝜓 → 𝑥 ≤ 𝑦 ) ) ) ) |
| 22 | anass | ⊢ ( ( ( 𝑥 ∈ ℕ ∧ 𝜑 ) ∧ ∀ 𝑦 ∈ ℕ ( 𝜓 → 𝑥 ≤ 𝑦 ) ) ↔ ( 𝑥 ∈ ℕ ∧ ( 𝜑 ∧ ∀ 𝑦 ∈ ℕ ( 𝜓 → 𝑥 ≤ 𝑦 ) ) ) ) | |
| 23 | 21 22 | bitr3i | ⊢ ( ( ( 𝑥 ∈ ℕ ∧ 𝜑 ) ∧ ∀ 𝑦 ( 𝑦 ∈ ℕ → ( 𝜓 → 𝑥 ≤ 𝑦 ) ) ) ↔ ( 𝑥 ∈ ℕ ∧ ( 𝜑 ∧ ∀ 𝑦 ∈ ℕ ( 𝜓 → 𝑥 ≤ 𝑦 ) ) ) ) |
| 24 | 23 | exbii | ⊢ ( ∃ 𝑥 ( ( 𝑥 ∈ ℕ ∧ 𝜑 ) ∧ ∀ 𝑦 ( 𝑦 ∈ ℕ → ( 𝜓 → 𝑥 ≤ 𝑦 ) ) ) ↔ ∃ 𝑥 ( 𝑥 ∈ ℕ ∧ ( 𝜑 ∧ ∀ 𝑦 ∈ ℕ ( 𝜓 → 𝑥 ≤ 𝑦 ) ) ) ) |
| 25 | df-rex | ⊢ ( ∃ 𝑥 ∈ ℕ ( 𝜑 ∧ ∀ 𝑦 ∈ ℕ ( 𝜓 → 𝑥 ≤ 𝑦 ) ) ↔ ∃ 𝑥 ( 𝑥 ∈ ℕ ∧ ( 𝜑 ∧ ∀ 𝑦 ∈ ℕ ( 𝜓 → 𝑥 ≤ 𝑦 ) ) ) ) | |
| 26 | 24 25 | bitr4i | ⊢ ( ∃ 𝑥 ( ( 𝑥 ∈ ℕ ∧ 𝜑 ) ∧ ∀ 𝑦 ( 𝑦 ∈ ℕ → ( 𝜓 → 𝑥 ≤ 𝑦 ) ) ) ↔ ∃ 𝑥 ∈ ℕ ( 𝜑 ∧ ∀ 𝑦 ∈ ℕ ( 𝜓 → 𝑥 ≤ 𝑦 ) ) ) |
| 27 | 9 19 26 | 3bitri | ⊢ ( ∃ 𝑥 ∈ { 𝑥 ∈ ℕ ∣ 𝜑 } ∀ 𝑦 ∈ { 𝑥 ∈ ℕ ∣ 𝜑 } 𝑥 ≤ 𝑦 ↔ ∃ 𝑥 ∈ ℕ ( 𝜑 ∧ ∀ 𝑦 ∈ ℕ ( 𝜓 → 𝑥 ≤ 𝑦 ) ) ) |
| 28 | 4 8 27 | 3imtr3i | ⊢ ( ∃ 𝑥 ∈ ℕ 𝜑 → ∃ 𝑥 ∈ ℕ ( 𝜑 ∧ ∀ 𝑦 ∈ ℕ ( 𝜓 → 𝑥 ≤ 𝑦 ) ) ) |