This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A set which is closed under pairwise intersection is closed under finite intersection. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 24-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | inficl | ⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∩ 𝑦 ) ∈ 𝐴 ↔ ( fi ‘ 𝐴 ) = 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssfii | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ⊆ ( fi ‘ 𝐴 ) ) | |
| 2 | eqimss2 | ⊢ ( 𝑧 = 𝐴 → 𝐴 ⊆ 𝑧 ) | |
| 3 | 2 | biantrurd | ⊢ ( 𝑧 = 𝐴 → ( ∀ 𝑥 ∈ 𝑧 ∀ 𝑦 ∈ 𝑧 ( 𝑥 ∩ 𝑦 ) ∈ 𝑧 ↔ ( 𝐴 ⊆ 𝑧 ∧ ∀ 𝑥 ∈ 𝑧 ∀ 𝑦 ∈ 𝑧 ( 𝑥 ∩ 𝑦 ) ∈ 𝑧 ) ) ) |
| 4 | eleq2 | ⊢ ( 𝑧 = 𝐴 → ( ( 𝑥 ∩ 𝑦 ) ∈ 𝑧 ↔ ( 𝑥 ∩ 𝑦 ) ∈ 𝐴 ) ) | |
| 5 | 4 | raleqbi1dv | ⊢ ( 𝑧 = 𝐴 → ( ∀ 𝑦 ∈ 𝑧 ( 𝑥 ∩ 𝑦 ) ∈ 𝑧 ↔ ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∩ 𝑦 ) ∈ 𝐴 ) ) |
| 6 | 5 | raleqbi1dv | ⊢ ( 𝑧 = 𝐴 → ( ∀ 𝑥 ∈ 𝑧 ∀ 𝑦 ∈ 𝑧 ( 𝑥 ∩ 𝑦 ) ∈ 𝑧 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∩ 𝑦 ) ∈ 𝐴 ) ) |
| 7 | 3 6 | bitr3d | ⊢ ( 𝑧 = 𝐴 → ( ( 𝐴 ⊆ 𝑧 ∧ ∀ 𝑥 ∈ 𝑧 ∀ 𝑦 ∈ 𝑧 ( 𝑥 ∩ 𝑦 ) ∈ 𝑧 ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∩ 𝑦 ) ∈ 𝐴 ) ) |
| 8 | 7 | elabg | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ { 𝑧 ∣ ( 𝐴 ⊆ 𝑧 ∧ ∀ 𝑥 ∈ 𝑧 ∀ 𝑦 ∈ 𝑧 ( 𝑥 ∩ 𝑦 ) ∈ 𝑧 ) } ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∩ 𝑦 ) ∈ 𝐴 ) ) |
| 9 | intss1 | ⊢ ( 𝐴 ∈ { 𝑧 ∣ ( 𝐴 ⊆ 𝑧 ∧ ∀ 𝑥 ∈ 𝑧 ∀ 𝑦 ∈ 𝑧 ( 𝑥 ∩ 𝑦 ) ∈ 𝑧 ) } → ∩ { 𝑧 ∣ ( 𝐴 ⊆ 𝑧 ∧ ∀ 𝑥 ∈ 𝑧 ∀ 𝑦 ∈ 𝑧 ( 𝑥 ∩ 𝑦 ) ∈ 𝑧 ) } ⊆ 𝐴 ) | |
| 10 | 8 9 | biimtrrdi | ⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∩ 𝑦 ) ∈ 𝐴 → ∩ { 𝑧 ∣ ( 𝐴 ⊆ 𝑧 ∧ ∀ 𝑥 ∈ 𝑧 ∀ 𝑦 ∈ 𝑧 ( 𝑥 ∩ 𝑦 ) ∈ 𝑧 ) } ⊆ 𝐴 ) ) |
| 11 | dffi2 | ⊢ ( 𝐴 ∈ 𝑉 → ( fi ‘ 𝐴 ) = ∩ { 𝑧 ∣ ( 𝐴 ⊆ 𝑧 ∧ ∀ 𝑥 ∈ 𝑧 ∀ 𝑦 ∈ 𝑧 ( 𝑥 ∩ 𝑦 ) ∈ 𝑧 ) } ) | |
| 12 | 11 | sseq1d | ⊢ ( 𝐴 ∈ 𝑉 → ( ( fi ‘ 𝐴 ) ⊆ 𝐴 ↔ ∩ { 𝑧 ∣ ( 𝐴 ⊆ 𝑧 ∧ ∀ 𝑥 ∈ 𝑧 ∀ 𝑦 ∈ 𝑧 ( 𝑥 ∩ 𝑦 ) ∈ 𝑧 ) } ⊆ 𝐴 ) ) |
| 13 | 10 12 | sylibrd | ⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∩ 𝑦 ) ∈ 𝐴 → ( fi ‘ 𝐴 ) ⊆ 𝐴 ) ) |
| 14 | eqss | ⊢ ( ( fi ‘ 𝐴 ) = 𝐴 ↔ ( ( fi ‘ 𝐴 ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( fi ‘ 𝐴 ) ) ) | |
| 15 | 14 | simplbi2com | ⊢ ( 𝐴 ⊆ ( fi ‘ 𝐴 ) → ( ( fi ‘ 𝐴 ) ⊆ 𝐴 → ( fi ‘ 𝐴 ) = 𝐴 ) ) |
| 16 | 1 13 15 | sylsyld | ⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∩ 𝑦 ) ∈ 𝐴 → ( fi ‘ 𝐴 ) = 𝐴 ) ) |
| 17 | fiin | ⊢ ( ( 𝑥 ∈ ( fi ‘ 𝐴 ) ∧ 𝑦 ∈ ( fi ‘ 𝐴 ) ) → ( 𝑥 ∩ 𝑦 ) ∈ ( fi ‘ 𝐴 ) ) | |
| 18 | 17 | rgen2 | ⊢ ∀ 𝑥 ∈ ( fi ‘ 𝐴 ) ∀ 𝑦 ∈ ( fi ‘ 𝐴 ) ( 𝑥 ∩ 𝑦 ) ∈ ( fi ‘ 𝐴 ) |
| 19 | eleq2 | ⊢ ( ( fi ‘ 𝐴 ) = 𝐴 → ( ( 𝑥 ∩ 𝑦 ) ∈ ( fi ‘ 𝐴 ) ↔ ( 𝑥 ∩ 𝑦 ) ∈ 𝐴 ) ) | |
| 20 | 19 | raleqbi1dv | ⊢ ( ( fi ‘ 𝐴 ) = 𝐴 → ( ∀ 𝑦 ∈ ( fi ‘ 𝐴 ) ( 𝑥 ∩ 𝑦 ) ∈ ( fi ‘ 𝐴 ) ↔ ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∩ 𝑦 ) ∈ 𝐴 ) ) |
| 21 | 20 | raleqbi1dv | ⊢ ( ( fi ‘ 𝐴 ) = 𝐴 → ( ∀ 𝑥 ∈ ( fi ‘ 𝐴 ) ∀ 𝑦 ∈ ( fi ‘ 𝐴 ) ( 𝑥 ∩ 𝑦 ) ∈ ( fi ‘ 𝐴 ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∩ 𝑦 ) ∈ 𝐴 ) ) |
| 22 | 18 21 | mpbii | ⊢ ( ( fi ‘ 𝐴 ) = 𝐴 → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∩ 𝑦 ) ∈ 𝐴 ) |
| 23 | 16 22 | impbid1 | ⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∩ 𝑦 ) ∈ 𝐴 ↔ ( fi ‘ 𝐴 ) = 𝐴 ) ) |