This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for usgrexmpl . (Contributed by Alexander van der Vekens, 15-Aug-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | usgrexmplef.v | ⊢ 𝑉 = ( 0 ... 4 ) | |
| usgrexmplef.e | ⊢ 𝐸 = 〈“ { 0 , 1 } { 1 , 2 } { 2 , 0 } { 0 , 3 } ”〉 | ||
| Assertion | usgrexmplef | ⊢ 𝐸 : dom 𝐸 –1-1→ { 𝑒 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑒 ) = 2 } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgrexmplef.v | ⊢ 𝑉 = ( 0 ... 4 ) | |
| 2 | usgrexmplef.e | ⊢ 𝐸 = 〈“ { 0 , 1 } { 1 , 2 } { 2 , 0 } { 0 , 3 } ”〉 | |
| 3 | usgrexmpldifpr | ⊢ ( ( { 0 , 1 } ≠ { 1 , 2 } ∧ { 0 , 1 } ≠ { 2 , 0 } ∧ { 0 , 1 } ≠ { 0 , 3 } ) ∧ ( { 1 , 2 } ≠ { 2 , 0 } ∧ { 1 , 2 } ≠ { 0 , 3 } ∧ { 2 , 0 } ≠ { 0 , 3 } ) ) | |
| 4 | prex | ⊢ { 0 , 1 } ∈ V | |
| 5 | prex | ⊢ { 1 , 2 } ∈ V | |
| 6 | prex | ⊢ { 2 , 0 } ∈ V | |
| 7 | prex | ⊢ { 0 , 3 } ∈ V | |
| 8 | s4f1o | ⊢ ( ( ( { 0 , 1 } ∈ V ∧ { 1 , 2 } ∈ V ) ∧ ( { 2 , 0 } ∈ V ∧ { 0 , 3 } ∈ V ) ) → ( ( ( { 0 , 1 } ≠ { 1 , 2 } ∧ { 0 , 1 } ≠ { 2 , 0 } ∧ { 0 , 1 } ≠ { 0 , 3 } ) ∧ ( { 1 , 2 } ≠ { 2 , 0 } ∧ { 1 , 2 } ≠ { 0 , 3 } ∧ { 2 , 0 } ≠ { 0 , 3 } ) ) → ( 𝐸 = 〈“ { 0 , 1 } { 1 , 2 } { 2 , 0 } { 0 , 3 } ”〉 → 𝐸 : dom 𝐸 –1-1-onto→ ( { { 0 , 1 } , { 1 , 2 } } ∪ { { 2 , 0 } , { 0 , 3 } } ) ) ) ) | |
| 9 | 4 5 6 7 8 | mp4an | ⊢ ( ( ( { 0 , 1 } ≠ { 1 , 2 } ∧ { 0 , 1 } ≠ { 2 , 0 } ∧ { 0 , 1 } ≠ { 0 , 3 } ) ∧ ( { 1 , 2 } ≠ { 2 , 0 } ∧ { 1 , 2 } ≠ { 0 , 3 } ∧ { 2 , 0 } ≠ { 0 , 3 } ) ) → ( 𝐸 = 〈“ { 0 , 1 } { 1 , 2 } { 2 , 0 } { 0 , 3 } ”〉 → 𝐸 : dom 𝐸 –1-1-onto→ ( { { 0 , 1 } , { 1 , 2 } } ∪ { { 2 , 0 } , { 0 , 3 } } ) ) ) |
| 10 | 3 2 9 | mp2 | ⊢ 𝐸 : dom 𝐸 –1-1-onto→ ( { { 0 , 1 } , { 1 , 2 } } ∪ { { 2 , 0 } , { 0 , 3 } } ) |
| 11 | f1of1 | ⊢ ( 𝐸 : dom 𝐸 –1-1-onto→ ( { { 0 , 1 } , { 1 , 2 } } ∪ { { 2 , 0 } , { 0 , 3 } } ) → 𝐸 : dom 𝐸 –1-1→ ( { { 0 , 1 } , { 1 , 2 } } ∪ { { 2 , 0 } , { 0 , 3 } } ) ) | |
| 12 | id | ⊢ ( ran 𝐸 ⊆ ( { { 0 , 1 } , { 1 , 2 } } ∪ { { 2 , 0 } , { 0 , 3 } } ) → ran 𝐸 ⊆ ( { { 0 , 1 } , { 1 , 2 } } ∪ { { 2 , 0 } , { 0 , 3 } } ) ) | |
| 13 | vex | ⊢ 𝑝 ∈ V | |
| 14 | 13 | elpr | ⊢ ( 𝑝 ∈ { { 0 , 1 } , { 1 , 2 } } ↔ ( 𝑝 = { 0 , 1 } ∨ 𝑝 = { 1 , 2 } ) ) |
| 15 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 16 | 4nn0 | ⊢ 4 ∈ ℕ0 | |
| 17 | 0re | ⊢ 0 ∈ ℝ | |
| 18 | 4re | ⊢ 4 ∈ ℝ | |
| 19 | 4pos | ⊢ 0 < 4 | |
| 20 | 17 18 19 | ltleii | ⊢ 0 ≤ 4 |
| 21 | elfz2nn0 | ⊢ ( 0 ∈ ( 0 ... 4 ) ↔ ( 0 ∈ ℕ0 ∧ 4 ∈ ℕ0 ∧ 0 ≤ 4 ) ) | |
| 22 | 15 16 20 21 | mpbir3an | ⊢ 0 ∈ ( 0 ... 4 ) |
| 23 | 22 1 | eleqtrri | ⊢ 0 ∈ 𝑉 |
| 24 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
| 25 | 1re | ⊢ 1 ∈ ℝ | |
| 26 | 1lt4 | ⊢ 1 < 4 | |
| 27 | 25 18 26 | ltleii | ⊢ 1 ≤ 4 |
| 28 | elfz2nn0 | ⊢ ( 1 ∈ ( 0 ... 4 ) ↔ ( 1 ∈ ℕ0 ∧ 4 ∈ ℕ0 ∧ 1 ≤ 4 ) ) | |
| 29 | 24 16 27 28 | mpbir3an | ⊢ 1 ∈ ( 0 ... 4 ) |
| 30 | 29 1 | eleqtrri | ⊢ 1 ∈ 𝑉 |
| 31 | prelpwi | ⊢ ( ( 0 ∈ 𝑉 ∧ 1 ∈ 𝑉 ) → { 0 , 1 } ∈ 𝒫 𝑉 ) | |
| 32 | eleq1 | ⊢ ( 𝑝 = { 0 , 1 } → ( 𝑝 ∈ 𝒫 𝑉 ↔ { 0 , 1 } ∈ 𝒫 𝑉 ) ) | |
| 33 | 31 32 | syl5ibrcom | ⊢ ( ( 0 ∈ 𝑉 ∧ 1 ∈ 𝑉 ) → ( 𝑝 = { 0 , 1 } → 𝑝 ∈ 𝒫 𝑉 ) ) |
| 34 | 23 30 33 | mp2an | ⊢ ( 𝑝 = { 0 , 1 } → 𝑝 ∈ 𝒫 𝑉 ) |
| 35 | fveq2 | ⊢ ( 𝑝 = { 0 , 1 } → ( ♯ ‘ 𝑝 ) = ( ♯ ‘ { 0 , 1 } ) ) | |
| 36 | prhash2ex | ⊢ ( ♯ ‘ { 0 , 1 } ) = 2 | |
| 37 | 35 36 | eqtrdi | ⊢ ( 𝑝 = { 0 , 1 } → ( ♯ ‘ 𝑝 ) = 2 ) |
| 38 | 34 37 | jca | ⊢ ( 𝑝 = { 0 , 1 } → ( 𝑝 ∈ 𝒫 𝑉 ∧ ( ♯ ‘ 𝑝 ) = 2 ) ) |
| 39 | 2nn0 | ⊢ 2 ∈ ℕ0 | |
| 40 | 2re | ⊢ 2 ∈ ℝ | |
| 41 | 2lt4 | ⊢ 2 < 4 | |
| 42 | 40 18 41 | ltleii | ⊢ 2 ≤ 4 |
| 43 | elfz2nn0 | ⊢ ( 2 ∈ ( 0 ... 4 ) ↔ ( 2 ∈ ℕ0 ∧ 4 ∈ ℕ0 ∧ 2 ≤ 4 ) ) | |
| 44 | 39 16 42 43 | mpbir3an | ⊢ 2 ∈ ( 0 ... 4 ) |
| 45 | 44 1 | eleqtrri | ⊢ 2 ∈ 𝑉 |
| 46 | prelpwi | ⊢ ( ( 1 ∈ 𝑉 ∧ 2 ∈ 𝑉 ) → { 1 , 2 } ∈ 𝒫 𝑉 ) | |
| 47 | eleq1 | ⊢ ( 𝑝 = { 1 , 2 } → ( 𝑝 ∈ 𝒫 𝑉 ↔ { 1 , 2 } ∈ 𝒫 𝑉 ) ) | |
| 48 | 46 47 | syl5ibrcom | ⊢ ( ( 1 ∈ 𝑉 ∧ 2 ∈ 𝑉 ) → ( 𝑝 = { 1 , 2 } → 𝑝 ∈ 𝒫 𝑉 ) ) |
| 49 | 30 45 48 | mp2an | ⊢ ( 𝑝 = { 1 , 2 } → 𝑝 ∈ 𝒫 𝑉 ) |
| 50 | fveq2 | ⊢ ( 𝑝 = { 1 , 2 } → ( ♯ ‘ 𝑝 ) = ( ♯ ‘ { 1 , 2 } ) ) | |
| 51 | 1ne2 | ⊢ 1 ≠ 2 | |
| 52 | 1nn | ⊢ 1 ∈ ℕ | |
| 53 | 2nn | ⊢ 2 ∈ ℕ | |
| 54 | hashprg | ⊢ ( ( 1 ∈ ℕ ∧ 2 ∈ ℕ ) → ( 1 ≠ 2 ↔ ( ♯ ‘ { 1 , 2 } ) = 2 ) ) | |
| 55 | 52 53 54 | mp2an | ⊢ ( 1 ≠ 2 ↔ ( ♯ ‘ { 1 , 2 } ) = 2 ) |
| 56 | 51 55 | mpbi | ⊢ ( ♯ ‘ { 1 , 2 } ) = 2 |
| 57 | 50 56 | eqtrdi | ⊢ ( 𝑝 = { 1 , 2 } → ( ♯ ‘ 𝑝 ) = 2 ) |
| 58 | 49 57 | jca | ⊢ ( 𝑝 = { 1 , 2 } → ( 𝑝 ∈ 𝒫 𝑉 ∧ ( ♯ ‘ 𝑝 ) = 2 ) ) |
| 59 | 38 58 | jaoi | ⊢ ( ( 𝑝 = { 0 , 1 } ∨ 𝑝 = { 1 , 2 } ) → ( 𝑝 ∈ 𝒫 𝑉 ∧ ( ♯ ‘ 𝑝 ) = 2 ) ) |
| 60 | 14 59 | sylbi | ⊢ ( 𝑝 ∈ { { 0 , 1 } , { 1 , 2 } } → ( 𝑝 ∈ 𝒫 𝑉 ∧ ( ♯ ‘ 𝑝 ) = 2 ) ) |
| 61 | 13 | elpr | ⊢ ( 𝑝 ∈ { { 2 , 0 } , { 0 , 3 } } ↔ ( 𝑝 = { 2 , 0 } ∨ 𝑝 = { 0 , 3 } ) ) |
| 62 | prelpwi | ⊢ ( ( 2 ∈ 𝑉 ∧ 0 ∈ 𝑉 ) → { 2 , 0 } ∈ 𝒫 𝑉 ) | |
| 63 | eleq1 | ⊢ ( 𝑝 = { 2 , 0 } → ( 𝑝 ∈ 𝒫 𝑉 ↔ { 2 , 0 } ∈ 𝒫 𝑉 ) ) | |
| 64 | 62 63 | syl5ibrcom | ⊢ ( ( 2 ∈ 𝑉 ∧ 0 ∈ 𝑉 ) → ( 𝑝 = { 2 , 0 } → 𝑝 ∈ 𝒫 𝑉 ) ) |
| 65 | 45 23 64 | mp2an | ⊢ ( 𝑝 = { 2 , 0 } → 𝑝 ∈ 𝒫 𝑉 ) |
| 66 | fveq2 | ⊢ ( 𝑝 = { 2 , 0 } → ( ♯ ‘ 𝑝 ) = ( ♯ ‘ { 2 , 0 } ) ) | |
| 67 | 2ne0 | ⊢ 2 ≠ 0 | |
| 68 | 2z | ⊢ 2 ∈ ℤ | |
| 69 | 0z | ⊢ 0 ∈ ℤ | |
| 70 | hashprg | ⊢ ( ( 2 ∈ ℤ ∧ 0 ∈ ℤ ) → ( 2 ≠ 0 ↔ ( ♯ ‘ { 2 , 0 } ) = 2 ) ) | |
| 71 | 68 69 70 | mp2an | ⊢ ( 2 ≠ 0 ↔ ( ♯ ‘ { 2 , 0 } ) = 2 ) |
| 72 | 67 71 | mpbi | ⊢ ( ♯ ‘ { 2 , 0 } ) = 2 |
| 73 | 66 72 | eqtrdi | ⊢ ( 𝑝 = { 2 , 0 } → ( ♯ ‘ 𝑝 ) = 2 ) |
| 74 | 65 73 | jca | ⊢ ( 𝑝 = { 2 , 0 } → ( 𝑝 ∈ 𝒫 𝑉 ∧ ( ♯ ‘ 𝑝 ) = 2 ) ) |
| 75 | 3nn0 | ⊢ 3 ∈ ℕ0 | |
| 76 | 3re | ⊢ 3 ∈ ℝ | |
| 77 | 3lt4 | ⊢ 3 < 4 | |
| 78 | 76 18 77 | ltleii | ⊢ 3 ≤ 4 |
| 79 | elfz2nn0 | ⊢ ( 3 ∈ ( 0 ... 4 ) ↔ ( 3 ∈ ℕ0 ∧ 4 ∈ ℕ0 ∧ 3 ≤ 4 ) ) | |
| 80 | 75 16 78 79 | mpbir3an | ⊢ 3 ∈ ( 0 ... 4 ) |
| 81 | 80 1 | eleqtrri | ⊢ 3 ∈ 𝑉 |
| 82 | prelpwi | ⊢ ( ( 0 ∈ 𝑉 ∧ 3 ∈ 𝑉 ) → { 0 , 3 } ∈ 𝒫 𝑉 ) | |
| 83 | eleq1 | ⊢ ( 𝑝 = { 0 , 3 } → ( 𝑝 ∈ 𝒫 𝑉 ↔ { 0 , 3 } ∈ 𝒫 𝑉 ) ) | |
| 84 | 82 83 | syl5ibrcom | ⊢ ( ( 0 ∈ 𝑉 ∧ 3 ∈ 𝑉 ) → ( 𝑝 = { 0 , 3 } → 𝑝 ∈ 𝒫 𝑉 ) ) |
| 85 | 23 81 84 | mp2an | ⊢ ( 𝑝 = { 0 , 3 } → 𝑝 ∈ 𝒫 𝑉 ) |
| 86 | fveq2 | ⊢ ( 𝑝 = { 0 , 3 } → ( ♯ ‘ 𝑝 ) = ( ♯ ‘ { 0 , 3 } ) ) | |
| 87 | 3ne0 | ⊢ 3 ≠ 0 | |
| 88 | 87 | necomi | ⊢ 0 ≠ 3 |
| 89 | 3z | ⊢ 3 ∈ ℤ | |
| 90 | hashprg | ⊢ ( ( 0 ∈ ℤ ∧ 3 ∈ ℤ ) → ( 0 ≠ 3 ↔ ( ♯ ‘ { 0 , 3 } ) = 2 ) ) | |
| 91 | 69 89 90 | mp2an | ⊢ ( 0 ≠ 3 ↔ ( ♯ ‘ { 0 , 3 } ) = 2 ) |
| 92 | 88 91 | mpbi | ⊢ ( ♯ ‘ { 0 , 3 } ) = 2 |
| 93 | 86 92 | eqtrdi | ⊢ ( 𝑝 = { 0 , 3 } → ( ♯ ‘ 𝑝 ) = 2 ) |
| 94 | 85 93 | jca | ⊢ ( 𝑝 = { 0 , 3 } → ( 𝑝 ∈ 𝒫 𝑉 ∧ ( ♯ ‘ 𝑝 ) = 2 ) ) |
| 95 | 74 94 | jaoi | ⊢ ( ( 𝑝 = { 2 , 0 } ∨ 𝑝 = { 0 , 3 } ) → ( 𝑝 ∈ 𝒫 𝑉 ∧ ( ♯ ‘ 𝑝 ) = 2 ) ) |
| 96 | 61 95 | sylbi | ⊢ ( 𝑝 ∈ { { 2 , 0 } , { 0 , 3 } } → ( 𝑝 ∈ 𝒫 𝑉 ∧ ( ♯ ‘ 𝑝 ) = 2 ) ) |
| 97 | 60 96 | jaoi | ⊢ ( ( 𝑝 ∈ { { 0 , 1 } , { 1 , 2 } } ∨ 𝑝 ∈ { { 2 , 0 } , { 0 , 3 } } ) → ( 𝑝 ∈ 𝒫 𝑉 ∧ ( ♯ ‘ 𝑝 ) = 2 ) ) |
| 98 | elun | ⊢ ( 𝑝 ∈ ( { { 0 , 1 } , { 1 , 2 } } ∪ { { 2 , 0 } , { 0 , 3 } } ) ↔ ( 𝑝 ∈ { { 0 , 1 } , { 1 , 2 } } ∨ 𝑝 ∈ { { 2 , 0 } , { 0 , 3 } } ) ) | |
| 99 | fveqeq2 | ⊢ ( 𝑒 = 𝑝 → ( ( ♯ ‘ 𝑒 ) = 2 ↔ ( ♯ ‘ 𝑝 ) = 2 ) ) | |
| 100 | 99 | elrab | ⊢ ( 𝑝 ∈ { 𝑒 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑒 ) = 2 } ↔ ( 𝑝 ∈ 𝒫 𝑉 ∧ ( ♯ ‘ 𝑝 ) = 2 ) ) |
| 101 | 97 98 100 | 3imtr4i | ⊢ ( 𝑝 ∈ ( { { 0 , 1 } , { 1 , 2 } } ∪ { { 2 , 0 } , { 0 , 3 } } ) → 𝑝 ∈ { 𝑒 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑒 ) = 2 } ) |
| 102 | 101 | ssriv | ⊢ ( { { 0 , 1 } , { 1 , 2 } } ∪ { { 2 , 0 } , { 0 , 3 } } ) ⊆ { 𝑒 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑒 ) = 2 } |
| 103 | 12 102 | sstrdi | ⊢ ( ran 𝐸 ⊆ ( { { 0 , 1 } , { 1 , 2 } } ∪ { { 2 , 0 } , { 0 , 3 } } ) → ran 𝐸 ⊆ { 𝑒 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑒 ) = 2 } ) |
| 104 | 103 | anim2i | ⊢ ( ( 𝐸 Fn dom 𝐸 ∧ ran 𝐸 ⊆ ( { { 0 , 1 } , { 1 , 2 } } ∪ { { 2 , 0 } , { 0 , 3 } } ) ) → ( 𝐸 Fn dom 𝐸 ∧ ran 𝐸 ⊆ { 𝑒 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑒 ) = 2 } ) ) |
| 105 | df-f | ⊢ ( 𝐸 : dom 𝐸 ⟶ ( { { 0 , 1 } , { 1 , 2 } } ∪ { { 2 , 0 } , { 0 , 3 } } ) ↔ ( 𝐸 Fn dom 𝐸 ∧ ran 𝐸 ⊆ ( { { 0 , 1 } , { 1 , 2 } } ∪ { { 2 , 0 } , { 0 , 3 } } ) ) ) | |
| 106 | df-f | ⊢ ( 𝐸 : dom 𝐸 ⟶ { 𝑒 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑒 ) = 2 } ↔ ( 𝐸 Fn dom 𝐸 ∧ ran 𝐸 ⊆ { 𝑒 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑒 ) = 2 } ) ) | |
| 107 | 104 105 106 | 3imtr4i | ⊢ ( 𝐸 : dom 𝐸 ⟶ ( { { 0 , 1 } , { 1 , 2 } } ∪ { { 2 , 0 } , { 0 , 3 } } ) → 𝐸 : dom 𝐸 ⟶ { 𝑒 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑒 ) = 2 } ) |
| 108 | 107 | anim1i | ⊢ ( ( 𝐸 : dom 𝐸 ⟶ ( { { 0 , 1 } , { 1 , 2 } } ∪ { { 2 , 0 } , { 0 , 3 } } ) ∧ ∀ 𝑥 ∃* 𝑦 𝑦 𝐸 𝑥 ) → ( 𝐸 : dom 𝐸 ⟶ { 𝑒 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑒 ) = 2 } ∧ ∀ 𝑥 ∃* 𝑦 𝑦 𝐸 𝑥 ) ) |
| 109 | dff12 | ⊢ ( 𝐸 : dom 𝐸 –1-1→ ( { { 0 , 1 } , { 1 , 2 } } ∪ { { 2 , 0 } , { 0 , 3 } } ) ↔ ( 𝐸 : dom 𝐸 ⟶ ( { { 0 , 1 } , { 1 , 2 } } ∪ { { 2 , 0 } , { 0 , 3 } } ) ∧ ∀ 𝑥 ∃* 𝑦 𝑦 𝐸 𝑥 ) ) | |
| 110 | dff12 | ⊢ ( 𝐸 : dom 𝐸 –1-1→ { 𝑒 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑒 ) = 2 } ↔ ( 𝐸 : dom 𝐸 ⟶ { 𝑒 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑒 ) = 2 } ∧ ∀ 𝑥 ∃* 𝑦 𝑦 𝐸 𝑥 ) ) | |
| 111 | 108 109 110 | 3imtr4i | ⊢ ( 𝐸 : dom 𝐸 –1-1→ ( { { 0 , 1 } , { 1 , 2 } } ∪ { { 2 , 0 } , { 0 , 3 } } ) → 𝐸 : dom 𝐸 –1-1→ { 𝑒 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑒 ) = 2 } ) |
| 112 | 10 11 111 | mp2b | ⊢ 𝐸 : dom 𝐸 –1-1→ { 𝑒 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑒 ) = 2 } |