This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: There is (at least) one set with two different elements: the unordered pair containing 0 and 1 . In contrast to pr0hash2ex , numbers are used instead of sets because their representation is shorter (and more comprehensive). (Contributed by AV, 29-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | prhash2ex | ⊢ ( ♯ ‘ { 0 , 1 } ) = 2 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ne1 | ⊢ 0 ≠ 1 | |
| 2 | c0ex | ⊢ 0 ∈ V | |
| 3 | 1ex | ⊢ 1 ∈ V | |
| 4 | hashprg | ⊢ ( ( 0 ∈ V ∧ 1 ∈ V ) → ( 0 ≠ 1 ↔ ( ♯ ‘ { 0 , 1 } ) = 2 ) ) | |
| 5 | 4 | bicomd | ⊢ ( ( 0 ∈ V ∧ 1 ∈ V ) → ( ( ♯ ‘ { 0 , 1 } ) = 2 ↔ 0 ≠ 1 ) ) |
| 6 | 2 3 5 | mp2an | ⊢ ( ( ♯ ‘ { 0 , 1 } ) = 2 ↔ 0 ≠ 1 ) |
| 7 | 1 6 | mpbir | ⊢ ( ♯ ‘ { 0 , 1 } ) = 2 |