This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for usgrexmpledg : all "edges" are different. (Contributed by Alexander van der Vekens, 15-Aug-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | usgrexmpldifpr | ⊢ ( ( { 0 , 1 } ≠ { 1 , 2 } ∧ { 0 , 1 } ≠ { 2 , 0 } ∧ { 0 , 1 } ≠ { 0 , 3 } ) ∧ ( { 1 , 2 } ≠ { 2 , 0 } ∧ { 1 , 2 } ≠ { 0 , 3 } ∧ { 2 , 0 } ≠ { 0 , 3 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0z | ⊢ 0 ∈ ℤ | |
| 2 | 1z | ⊢ 1 ∈ ℤ | |
| 3 | 1 2 | pm3.2i | ⊢ ( 0 ∈ ℤ ∧ 1 ∈ ℤ ) |
| 4 | 2z | ⊢ 2 ∈ ℤ | |
| 5 | 2 4 | pm3.2i | ⊢ ( 1 ∈ ℤ ∧ 2 ∈ ℤ ) |
| 6 | 3 5 | pm3.2i | ⊢ ( ( 0 ∈ ℤ ∧ 1 ∈ ℤ ) ∧ ( 1 ∈ ℤ ∧ 2 ∈ ℤ ) ) |
| 7 | ax-1ne0 | ⊢ 1 ≠ 0 | |
| 8 | 7 | necomi | ⊢ 0 ≠ 1 |
| 9 | 2ne0 | ⊢ 2 ≠ 0 | |
| 10 | 9 | necomi | ⊢ 0 ≠ 2 |
| 11 | 8 10 | pm3.2i | ⊢ ( 0 ≠ 1 ∧ 0 ≠ 2 ) |
| 12 | 11 | orci | ⊢ ( ( 0 ≠ 1 ∧ 0 ≠ 2 ) ∨ ( 1 ≠ 1 ∧ 1 ≠ 2 ) ) |
| 13 | prneimg | ⊢ ( ( ( 0 ∈ ℤ ∧ 1 ∈ ℤ ) ∧ ( 1 ∈ ℤ ∧ 2 ∈ ℤ ) ) → ( ( ( 0 ≠ 1 ∧ 0 ≠ 2 ) ∨ ( 1 ≠ 1 ∧ 1 ≠ 2 ) ) → { 0 , 1 } ≠ { 1 , 2 } ) ) | |
| 14 | 6 12 13 | mp2 | ⊢ { 0 , 1 } ≠ { 1 , 2 } |
| 15 | 4 1 | pm3.2i | ⊢ ( 2 ∈ ℤ ∧ 0 ∈ ℤ ) |
| 16 | 3 15 | pm3.2i | ⊢ ( ( 0 ∈ ℤ ∧ 1 ∈ ℤ ) ∧ ( 2 ∈ ℤ ∧ 0 ∈ ℤ ) ) |
| 17 | 1ne2 | ⊢ 1 ≠ 2 | |
| 18 | 17 7 | pm3.2i | ⊢ ( 1 ≠ 2 ∧ 1 ≠ 0 ) |
| 19 | 18 | olci | ⊢ ( ( 0 ≠ 2 ∧ 0 ≠ 0 ) ∨ ( 1 ≠ 2 ∧ 1 ≠ 0 ) ) |
| 20 | prneimg | ⊢ ( ( ( 0 ∈ ℤ ∧ 1 ∈ ℤ ) ∧ ( 2 ∈ ℤ ∧ 0 ∈ ℤ ) ) → ( ( ( 0 ≠ 2 ∧ 0 ≠ 0 ) ∨ ( 1 ≠ 2 ∧ 1 ≠ 0 ) ) → { 0 , 1 } ≠ { 2 , 0 } ) ) | |
| 21 | 16 19 20 | mp2 | ⊢ { 0 , 1 } ≠ { 2 , 0 } |
| 22 | 3nn | ⊢ 3 ∈ ℕ | |
| 23 | 1 22 | pm3.2i | ⊢ ( 0 ∈ ℤ ∧ 3 ∈ ℕ ) |
| 24 | 3 23 | pm3.2i | ⊢ ( ( 0 ∈ ℤ ∧ 1 ∈ ℤ ) ∧ ( 0 ∈ ℤ ∧ 3 ∈ ℕ ) ) |
| 25 | 1re | ⊢ 1 ∈ ℝ | |
| 26 | 1lt3 | ⊢ 1 < 3 | |
| 27 | 25 26 | ltneii | ⊢ 1 ≠ 3 |
| 28 | 7 27 | pm3.2i | ⊢ ( 1 ≠ 0 ∧ 1 ≠ 3 ) |
| 29 | 28 | olci | ⊢ ( ( 0 ≠ 0 ∧ 0 ≠ 3 ) ∨ ( 1 ≠ 0 ∧ 1 ≠ 3 ) ) |
| 30 | prneimg | ⊢ ( ( ( 0 ∈ ℤ ∧ 1 ∈ ℤ ) ∧ ( 0 ∈ ℤ ∧ 3 ∈ ℕ ) ) → ( ( ( 0 ≠ 0 ∧ 0 ≠ 3 ) ∨ ( 1 ≠ 0 ∧ 1 ≠ 3 ) ) → { 0 , 1 } ≠ { 0 , 3 } ) ) | |
| 31 | 24 29 30 | mp2 | ⊢ { 0 , 1 } ≠ { 0 , 3 } |
| 32 | 14 21 31 | 3pm3.2i | ⊢ ( { 0 , 1 } ≠ { 1 , 2 } ∧ { 0 , 1 } ≠ { 2 , 0 } ∧ { 0 , 1 } ≠ { 0 , 3 } ) |
| 33 | 5 15 | pm3.2i | ⊢ ( ( 1 ∈ ℤ ∧ 2 ∈ ℤ ) ∧ ( 2 ∈ ℤ ∧ 0 ∈ ℤ ) ) |
| 34 | 18 | orci | ⊢ ( ( 1 ≠ 2 ∧ 1 ≠ 0 ) ∨ ( 2 ≠ 2 ∧ 2 ≠ 0 ) ) |
| 35 | prneimg | ⊢ ( ( ( 1 ∈ ℤ ∧ 2 ∈ ℤ ) ∧ ( 2 ∈ ℤ ∧ 0 ∈ ℤ ) ) → ( ( ( 1 ≠ 2 ∧ 1 ≠ 0 ) ∨ ( 2 ≠ 2 ∧ 2 ≠ 0 ) ) → { 1 , 2 } ≠ { 2 , 0 } ) ) | |
| 36 | 33 34 35 | mp2 | ⊢ { 1 , 2 } ≠ { 2 , 0 } |
| 37 | 5 23 | pm3.2i | ⊢ ( ( 1 ∈ ℤ ∧ 2 ∈ ℤ ) ∧ ( 0 ∈ ℤ ∧ 3 ∈ ℕ ) ) |
| 38 | 28 | orci | ⊢ ( ( 1 ≠ 0 ∧ 1 ≠ 3 ) ∨ ( 2 ≠ 0 ∧ 2 ≠ 3 ) ) |
| 39 | prneimg | ⊢ ( ( ( 1 ∈ ℤ ∧ 2 ∈ ℤ ) ∧ ( 0 ∈ ℤ ∧ 3 ∈ ℕ ) ) → ( ( ( 1 ≠ 0 ∧ 1 ≠ 3 ) ∨ ( 2 ≠ 0 ∧ 2 ≠ 3 ) ) → { 1 , 2 } ≠ { 0 , 3 } ) ) | |
| 40 | 37 38 39 | mp2 | ⊢ { 1 , 2 } ≠ { 0 , 3 } |
| 41 | 15 23 | pm3.2i | ⊢ ( ( 2 ∈ ℤ ∧ 0 ∈ ℤ ) ∧ ( 0 ∈ ℤ ∧ 3 ∈ ℕ ) ) |
| 42 | 2re | ⊢ 2 ∈ ℝ | |
| 43 | 2lt3 | ⊢ 2 < 3 | |
| 44 | 42 43 | ltneii | ⊢ 2 ≠ 3 |
| 45 | 9 44 | pm3.2i | ⊢ ( 2 ≠ 0 ∧ 2 ≠ 3 ) |
| 46 | 45 | orci | ⊢ ( ( 2 ≠ 0 ∧ 2 ≠ 3 ) ∨ ( 0 ≠ 0 ∧ 0 ≠ 3 ) ) |
| 47 | prneimg | ⊢ ( ( ( 2 ∈ ℤ ∧ 0 ∈ ℤ ) ∧ ( 0 ∈ ℤ ∧ 3 ∈ ℕ ) ) → ( ( ( 2 ≠ 0 ∧ 2 ≠ 3 ) ∨ ( 0 ≠ 0 ∧ 0 ≠ 3 ) ) → { 2 , 0 } ≠ { 0 , 3 } ) ) | |
| 48 | 41 46 47 | mp2 | ⊢ { 2 , 0 } ≠ { 0 , 3 } |
| 49 | 36 40 48 | 3pm3.2i | ⊢ ( { 1 , 2 } ≠ { 2 , 0 } ∧ { 1 , 2 } ≠ { 0 , 3 } ∧ { 2 , 0 } ≠ { 0 , 3 } ) |
| 50 | 32 49 | pm3.2i | ⊢ ( ( { 0 , 1 } ≠ { 1 , 2 } ∧ { 0 , 1 } ≠ { 2 , 0 } ∧ { 0 , 1 } ≠ { 0 , 3 } ) ∧ ( { 1 , 2 } ≠ { 2 , 0 } ∧ { 1 , 2 } ≠ { 0 , 3 } ∧ { 2 , 0 } ≠ { 0 , 3 } ) ) |