This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The size of an unordered pair. (Contributed by Mario Carneiro, 27-Sep-2013) (Revised by Mario Carneiro, 5-May-2016) (Revised by AV, 18-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashprg | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 ≠ 𝐵 ↔ ( ♯ ‘ { 𝐴 , 𝐵 } ) = 2 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → 𝐵 ∈ 𝑊 ) | |
| 2 | elsni | ⊢ ( 𝐵 ∈ { 𝐴 } → 𝐵 = 𝐴 ) | |
| 3 | 2 | eqcomd | ⊢ ( 𝐵 ∈ { 𝐴 } → 𝐴 = 𝐵 ) |
| 4 | 3 | necon3ai | ⊢ ( 𝐴 ≠ 𝐵 → ¬ 𝐵 ∈ { 𝐴 } ) |
| 5 | snfi | ⊢ { 𝐴 } ∈ Fin | |
| 6 | hashunsng | ⊢ ( 𝐵 ∈ 𝑊 → ( ( { 𝐴 } ∈ Fin ∧ ¬ 𝐵 ∈ { 𝐴 } ) → ( ♯ ‘ ( { 𝐴 } ∪ { 𝐵 } ) ) = ( ( ♯ ‘ { 𝐴 } ) + 1 ) ) ) | |
| 7 | 6 | imp | ⊢ ( ( 𝐵 ∈ 𝑊 ∧ ( { 𝐴 } ∈ Fin ∧ ¬ 𝐵 ∈ { 𝐴 } ) ) → ( ♯ ‘ ( { 𝐴 } ∪ { 𝐵 } ) ) = ( ( ♯ ‘ { 𝐴 } ) + 1 ) ) |
| 8 | 5 7 | mpanr1 | ⊢ ( ( 𝐵 ∈ 𝑊 ∧ ¬ 𝐵 ∈ { 𝐴 } ) → ( ♯ ‘ ( { 𝐴 } ∪ { 𝐵 } ) ) = ( ( ♯ ‘ { 𝐴 } ) + 1 ) ) |
| 9 | 1 4 8 | syl2an | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝐴 ≠ 𝐵 ) → ( ♯ ‘ ( { 𝐴 } ∪ { 𝐵 } ) ) = ( ( ♯ ‘ { 𝐴 } ) + 1 ) ) |
| 10 | hashsng | ⊢ ( 𝐴 ∈ 𝑉 → ( ♯ ‘ { 𝐴 } ) = 1 ) | |
| 11 | 10 | adantr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ♯ ‘ { 𝐴 } ) = 1 ) |
| 12 | 11 | adantr | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝐴 ≠ 𝐵 ) → ( ♯ ‘ { 𝐴 } ) = 1 ) |
| 13 | 12 | oveq1d | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝐴 ≠ 𝐵 ) → ( ( ♯ ‘ { 𝐴 } ) + 1 ) = ( 1 + 1 ) ) |
| 14 | 9 13 | eqtrd | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝐴 ≠ 𝐵 ) → ( ♯ ‘ ( { 𝐴 } ∪ { 𝐵 } ) ) = ( 1 + 1 ) ) |
| 15 | df-pr | ⊢ { 𝐴 , 𝐵 } = ( { 𝐴 } ∪ { 𝐵 } ) | |
| 16 | 15 | fveq2i | ⊢ ( ♯ ‘ { 𝐴 , 𝐵 } ) = ( ♯ ‘ ( { 𝐴 } ∪ { 𝐵 } ) ) |
| 17 | df-2 | ⊢ 2 = ( 1 + 1 ) | |
| 18 | 14 16 17 | 3eqtr4g | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝐴 ≠ 𝐵 ) → ( ♯ ‘ { 𝐴 , 𝐵 } ) = 2 ) |
| 19 | 1ne2 | ⊢ 1 ≠ 2 | |
| 20 | 19 | a1i | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → 1 ≠ 2 ) |
| 21 | 11 20 | eqnetrd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ♯ ‘ { 𝐴 } ) ≠ 2 ) |
| 22 | dfsn2 | ⊢ { 𝐴 } = { 𝐴 , 𝐴 } | |
| 23 | preq2 | ⊢ ( 𝐴 = 𝐵 → { 𝐴 , 𝐴 } = { 𝐴 , 𝐵 } ) | |
| 24 | 22 23 | eqtr2id | ⊢ ( 𝐴 = 𝐵 → { 𝐴 , 𝐵 } = { 𝐴 } ) |
| 25 | 24 | fveq2d | ⊢ ( 𝐴 = 𝐵 → ( ♯ ‘ { 𝐴 , 𝐵 } ) = ( ♯ ‘ { 𝐴 } ) ) |
| 26 | 25 | neeq1d | ⊢ ( 𝐴 = 𝐵 → ( ( ♯ ‘ { 𝐴 , 𝐵 } ) ≠ 2 ↔ ( ♯ ‘ { 𝐴 } ) ≠ 2 ) ) |
| 27 | 21 26 | syl5ibrcom | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 = 𝐵 → ( ♯ ‘ { 𝐴 , 𝐵 } ) ≠ 2 ) ) |
| 28 | 27 | necon2d | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( ♯ ‘ { 𝐴 , 𝐵 } ) = 2 → 𝐴 ≠ 𝐵 ) ) |
| 29 | 28 | imp | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ( ♯ ‘ { 𝐴 , 𝐵 } ) = 2 ) → 𝐴 ≠ 𝐵 ) |
| 30 | 18 29 | impbida | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 ≠ 𝐵 ↔ ( ♯ ‘ { 𝐴 , 𝐵 } ) = 2 ) ) |