This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: G is a simple graph of five vertices 0 , 1 , 2 , 3 , 4 , with edges { 0 , 1 } , { 1 , 2 } , { 2 , 0 } , { 0 , 3 } . (Contributed by Alexander van der Vekens, 15-Aug-2017) (Revised by AV, 21-Oct-2020) (Proof shortened by AV, 7-Aug-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | usgrexmpl.v | ⊢ 𝑉 = ( 0 ... 4 ) | |
| usgrexmpl.e | ⊢ 𝐸 = 〈“ { 0 , 1 } { 1 , 2 } { 2 , 0 } { 0 , 3 } ”〉 | ||
| usgrexmpl.g | ⊢ 𝐺 = 〈 𝑉 , 𝐸 〉 | ||
| Assertion | usgrexmpl | ⊢ 𝐺 ∈ USGraph |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgrexmpl.v | ⊢ 𝑉 = ( 0 ... 4 ) | |
| 2 | usgrexmpl.e | ⊢ 𝐸 = 〈“ { 0 , 1 } { 1 , 2 } { 2 , 0 } { 0 , 3 } ”〉 | |
| 3 | usgrexmpl.g | ⊢ 𝐺 = 〈 𝑉 , 𝐸 〉 | |
| 4 | 1 2 | usgrexmplef | ⊢ 𝐸 : dom 𝐸 –1-1→ { 𝑒 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑒 ) = 2 } |
| 5 | 3 | eleq1i | ⊢ ( 𝐺 ∈ USGraph ↔ 〈 𝑉 , 𝐸 〉 ∈ USGraph ) |
| 6 | 1 | ovexi | ⊢ 𝑉 ∈ V |
| 7 | s4cli | ⊢ 〈“ { 0 , 1 } { 1 , 2 } { 2 , 0 } { 0 , 3 } ”〉 ∈ Word V | |
| 8 | 2 7 | eqeltri | ⊢ 𝐸 ∈ Word V |
| 9 | isusgrop | ⊢ ( ( 𝑉 ∈ V ∧ 𝐸 ∈ Word V ) → ( 〈 𝑉 , 𝐸 〉 ∈ USGraph ↔ 𝐸 : dom 𝐸 –1-1→ { 𝑒 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑒 ) = 2 } ) ) | |
| 10 | 6 8 9 | mp2an | ⊢ ( 〈 𝑉 , 𝐸 〉 ∈ USGraph ↔ 𝐸 : dom 𝐸 –1-1→ { 𝑒 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑒 ) = 2 } ) |
| 11 | 5 10 | bitri | ⊢ ( 𝐺 ∈ USGraph ↔ 𝐸 : dom 𝐸 –1-1→ { 𝑒 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑒 ) = 2 } ) |
| 12 | 4 11 | mpbir | ⊢ 𝐺 ∈ USGraph |