This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a simple graph, the mapping of edges having a fixed endpoint to the other vertex of the edge is a one-to-one function into the set of vertices. (Contributed by Alexander van der Vekens, 4-Jan-2018) (Revised by AV, 18-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | usgredg2v.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| usgredg2v.e | ⊢ 𝐸 = ( iEdg ‘ 𝐺 ) | ||
| usgredg2v.a | ⊢ 𝐴 = { 𝑥 ∈ dom 𝐸 ∣ 𝑁 ∈ ( 𝐸 ‘ 𝑥 ) } | ||
| usgredg2v.f | ⊢ 𝐹 = ( 𝑦 ∈ 𝐴 ↦ ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑧 , 𝑁 } ) ) | ||
| Assertion | usgredg2v | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉 ) → 𝐹 : 𝐴 –1-1→ 𝑉 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgredg2v.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | usgredg2v.e | ⊢ 𝐸 = ( iEdg ‘ 𝐺 ) | |
| 3 | usgredg2v.a | ⊢ 𝐴 = { 𝑥 ∈ dom 𝐸 ∣ 𝑁 ∈ ( 𝐸 ‘ 𝑥 ) } | |
| 4 | usgredg2v.f | ⊢ 𝐹 = ( 𝑦 ∈ 𝐴 ↦ ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑧 , 𝑁 } ) ) | |
| 5 | 1 2 3 | usgredg2vlem1 | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑦 ∈ 𝐴 ) → ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑧 , 𝑁 } ) ∈ 𝑉 ) |
| 6 | 5 | ralrimiva | ⊢ ( 𝐺 ∈ USGraph → ∀ 𝑦 ∈ 𝐴 ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑧 , 𝑁 } ) ∈ 𝑉 ) |
| 7 | 6 | adantr | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉 ) → ∀ 𝑦 ∈ 𝐴 ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑧 , 𝑁 } ) ∈ 𝑉 ) |
| 8 | 2 | usgrf1 | ⊢ ( 𝐺 ∈ USGraph → 𝐸 : dom 𝐸 –1-1→ ran 𝐸 ) |
| 9 | 8 | adantr | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉 ) → 𝐸 : dom 𝐸 –1-1→ ran 𝐸 ) |
| 10 | elrabi | ⊢ ( 𝑦 ∈ { 𝑥 ∈ dom 𝐸 ∣ 𝑁 ∈ ( 𝐸 ‘ 𝑥 ) } → 𝑦 ∈ dom 𝐸 ) | |
| 11 | 10 3 | eleq2s | ⊢ ( 𝑦 ∈ 𝐴 → 𝑦 ∈ dom 𝐸 ) |
| 12 | elrabi | ⊢ ( 𝑤 ∈ { 𝑥 ∈ dom 𝐸 ∣ 𝑁 ∈ ( 𝐸 ‘ 𝑥 ) } → 𝑤 ∈ dom 𝐸 ) | |
| 13 | 12 3 | eleq2s | ⊢ ( 𝑤 ∈ 𝐴 → 𝑤 ∈ dom 𝐸 ) |
| 14 | 11 13 | anim12i | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) → ( 𝑦 ∈ dom 𝐸 ∧ 𝑤 ∈ dom 𝐸 ) ) |
| 15 | f1fveq | ⊢ ( ( 𝐸 : dom 𝐸 –1-1→ ran 𝐸 ∧ ( 𝑦 ∈ dom 𝐸 ∧ 𝑤 ∈ dom 𝐸 ) ) → ( ( 𝐸 ‘ 𝑦 ) = ( 𝐸 ‘ 𝑤 ) ↔ 𝑦 = 𝑤 ) ) | |
| 16 | 9 14 15 | syl2an | ⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( ( 𝐸 ‘ 𝑦 ) = ( 𝐸 ‘ 𝑤 ) ↔ 𝑦 = 𝑤 ) ) |
| 17 | 16 | bicomd | ⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( 𝑦 = 𝑤 ↔ ( 𝐸 ‘ 𝑦 ) = ( 𝐸 ‘ 𝑤 ) ) ) |
| 18 | 17 | notbid | ⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( ¬ 𝑦 = 𝑤 ↔ ¬ ( 𝐸 ‘ 𝑦 ) = ( 𝐸 ‘ 𝑤 ) ) ) |
| 19 | simpl | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉 ) → 𝐺 ∈ USGraph ) | |
| 20 | simpl | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) → 𝑦 ∈ 𝐴 ) | |
| 21 | 19 20 | anim12i | ⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( 𝐺 ∈ USGraph ∧ 𝑦 ∈ 𝐴 ) ) |
| 22 | preq1 | ⊢ ( 𝑢 = 𝑧 → { 𝑢 , 𝑁 } = { 𝑧 , 𝑁 } ) | |
| 23 | 22 | eqeq2d | ⊢ ( 𝑢 = 𝑧 → ( ( 𝐸 ‘ 𝑦 ) = { 𝑢 , 𝑁 } ↔ ( 𝐸 ‘ 𝑦 ) = { 𝑧 , 𝑁 } ) ) |
| 24 | 23 | cbvriotavw | ⊢ ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑢 , 𝑁 } ) = ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑧 , 𝑁 } ) |
| 25 | 1 2 3 | usgredg2vlem2 | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑦 ∈ 𝐴 ) → ( ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑢 , 𝑁 } ) = ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑧 , 𝑁 } ) → ( 𝐸 ‘ 𝑦 ) = { ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑢 , 𝑁 } ) , 𝑁 } ) ) |
| 26 | 21 24 25 | mpisyl | ⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( 𝐸 ‘ 𝑦 ) = { ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑢 , 𝑁 } ) , 𝑁 } ) |
| 27 | an3 | ⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( 𝐺 ∈ USGraph ∧ 𝑤 ∈ 𝐴 ) ) | |
| 28 | 22 | eqeq2d | ⊢ ( 𝑢 = 𝑧 → ( ( 𝐸 ‘ 𝑤 ) = { 𝑢 , 𝑁 } ↔ ( 𝐸 ‘ 𝑤 ) = { 𝑧 , 𝑁 } ) ) |
| 29 | 28 | cbvriotavw | ⊢ ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑢 , 𝑁 } ) = ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑧 , 𝑁 } ) |
| 30 | 1 2 3 | usgredg2vlem2 | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑤 ∈ 𝐴 ) → ( ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑢 , 𝑁 } ) = ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑧 , 𝑁 } ) → ( 𝐸 ‘ 𝑤 ) = { ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑢 , 𝑁 } ) , 𝑁 } ) ) |
| 31 | 27 29 30 | mpisyl | ⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( 𝐸 ‘ 𝑤 ) = { ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑢 , 𝑁 } ) , 𝑁 } ) |
| 32 | 26 31 | eqeq12d | ⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( ( 𝐸 ‘ 𝑦 ) = ( 𝐸 ‘ 𝑤 ) ↔ { ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑢 , 𝑁 } ) , 𝑁 } = { ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑢 , 𝑁 } ) , 𝑁 } ) ) |
| 33 | 32 | notbid | ⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( ¬ ( 𝐸 ‘ 𝑦 ) = ( 𝐸 ‘ 𝑤 ) ↔ ¬ { ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑢 , 𝑁 } ) , 𝑁 } = { ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑢 , 𝑁 } ) , 𝑁 } ) ) |
| 34 | riotaex | ⊢ ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑢 , 𝑁 } ) ∈ V | |
| 35 | 34 | a1i | ⊢ ( 𝑁 ∈ 𝑉 → ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑢 , 𝑁 } ) ∈ V ) |
| 36 | id | ⊢ ( 𝑁 ∈ 𝑉 → 𝑁 ∈ 𝑉 ) | |
| 37 | riotaex | ⊢ ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑢 , 𝑁 } ) ∈ V | |
| 38 | 37 | a1i | ⊢ ( 𝑁 ∈ 𝑉 → ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑢 , 𝑁 } ) ∈ V ) |
| 39 | preq12bg | ⊢ ( ( ( ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑢 , 𝑁 } ) ∈ V ∧ 𝑁 ∈ 𝑉 ) ∧ ( ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑢 , 𝑁 } ) ∈ V ∧ 𝑁 ∈ 𝑉 ) ) → ( { ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑢 , 𝑁 } ) , 𝑁 } = { ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑢 , 𝑁 } ) , 𝑁 } ↔ ( ( ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑢 , 𝑁 } ) = ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑢 , 𝑁 } ) ∧ 𝑁 = 𝑁 ) ∨ ( ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑢 , 𝑁 } ) = 𝑁 ∧ 𝑁 = ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑢 , 𝑁 } ) ) ) ) ) | |
| 40 | 35 36 38 36 39 | syl22anc | ⊢ ( 𝑁 ∈ 𝑉 → ( { ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑢 , 𝑁 } ) , 𝑁 } = { ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑢 , 𝑁 } ) , 𝑁 } ↔ ( ( ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑢 , 𝑁 } ) = ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑢 , 𝑁 } ) ∧ 𝑁 = 𝑁 ) ∨ ( ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑢 , 𝑁 } ) = 𝑁 ∧ 𝑁 = ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑢 , 𝑁 } ) ) ) ) ) |
| 41 | 40 | notbid | ⊢ ( 𝑁 ∈ 𝑉 → ( ¬ { ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑢 , 𝑁 } ) , 𝑁 } = { ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑢 , 𝑁 } ) , 𝑁 } ↔ ¬ ( ( ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑢 , 𝑁 } ) = ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑢 , 𝑁 } ) ∧ 𝑁 = 𝑁 ) ∨ ( ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑢 , 𝑁 } ) = 𝑁 ∧ 𝑁 = ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑢 , 𝑁 } ) ) ) ) ) |
| 42 | 41 | adantl | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉 ) → ( ¬ { ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑢 , 𝑁 } ) , 𝑁 } = { ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑢 , 𝑁 } ) , 𝑁 } ↔ ¬ ( ( ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑢 , 𝑁 } ) = ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑢 , 𝑁 } ) ∧ 𝑁 = 𝑁 ) ∨ ( ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑢 , 𝑁 } ) = 𝑁 ∧ 𝑁 = ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑢 , 𝑁 } ) ) ) ) ) |
| 43 | ioran | ⊢ ( ¬ ( ( ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑢 , 𝑁 } ) = ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑢 , 𝑁 } ) ∧ 𝑁 = 𝑁 ) ∨ ( ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑢 , 𝑁 } ) = 𝑁 ∧ 𝑁 = ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑢 , 𝑁 } ) ) ) ↔ ( ¬ ( ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑢 , 𝑁 } ) = ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑢 , 𝑁 } ) ∧ 𝑁 = 𝑁 ) ∧ ¬ ( ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑢 , 𝑁 } ) = 𝑁 ∧ 𝑁 = ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑢 , 𝑁 } ) ) ) ) | |
| 44 | ianor | ⊢ ( ¬ ( ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑢 , 𝑁 } ) = ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑢 , 𝑁 } ) ∧ 𝑁 = 𝑁 ) ↔ ( ¬ ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑢 , 𝑁 } ) = ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑢 , 𝑁 } ) ∨ ¬ 𝑁 = 𝑁 ) ) | |
| 45 | 24 29 | eqeq12i | ⊢ ( ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑢 , 𝑁 } ) = ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑢 , 𝑁 } ) ↔ ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑧 , 𝑁 } ) = ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑧 , 𝑁 } ) ) |
| 46 | 45 | notbii | ⊢ ( ¬ ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑢 , 𝑁 } ) = ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑢 , 𝑁 } ) ↔ ¬ ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑧 , 𝑁 } ) = ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑧 , 𝑁 } ) ) |
| 47 | 46 | biimpi | ⊢ ( ¬ ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑢 , 𝑁 } ) = ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑢 , 𝑁 } ) → ¬ ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑧 , 𝑁 } ) = ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑧 , 𝑁 } ) ) |
| 48 | 47 | a1d | ⊢ ( ¬ ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑢 , 𝑁 } ) = ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑢 , 𝑁 } ) → ( 𝐺 ∈ USGraph → ¬ ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑧 , 𝑁 } ) = ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑧 , 𝑁 } ) ) ) |
| 49 | eqid | ⊢ 𝑁 = 𝑁 | |
| 50 | 49 | pm2.24i | ⊢ ( ¬ 𝑁 = 𝑁 → ( 𝐺 ∈ USGraph → ¬ ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑧 , 𝑁 } ) = ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑧 , 𝑁 } ) ) ) |
| 51 | 48 50 | jaoi | ⊢ ( ( ¬ ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑢 , 𝑁 } ) = ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑢 , 𝑁 } ) ∨ ¬ 𝑁 = 𝑁 ) → ( 𝐺 ∈ USGraph → ¬ ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑧 , 𝑁 } ) = ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑧 , 𝑁 } ) ) ) |
| 52 | 44 51 | sylbi | ⊢ ( ¬ ( ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑢 , 𝑁 } ) = ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑢 , 𝑁 } ) ∧ 𝑁 = 𝑁 ) → ( 𝐺 ∈ USGraph → ¬ ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑧 , 𝑁 } ) = ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑧 , 𝑁 } ) ) ) |
| 53 | 52 | adantr | ⊢ ( ( ¬ ( ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑢 , 𝑁 } ) = ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑢 , 𝑁 } ) ∧ 𝑁 = 𝑁 ) ∧ ¬ ( ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑢 , 𝑁 } ) = 𝑁 ∧ 𝑁 = ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑢 , 𝑁 } ) ) ) → ( 𝐺 ∈ USGraph → ¬ ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑧 , 𝑁 } ) = ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑧 , 𝑁 } ) ) ) |
| 54 | 43 53 | sylbi | ⊢ ( ¬ ( ( ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑢 , 𝑁 } ) = ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑢 , 𝑁 } ) ∧ 𝑁 = 𝑁 ) ∨ ( ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑢 , 𝑁 } ) = 𝑁 ∧ 𝑁 = ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑢 , 𝑁 } ) ) ) → ( 𝐺 ∈ USGraph → ¬ ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑧 , 𝑁 } ) = ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑧 , 𝑁 } ) ) ) |
| 55 | 54 | com12 | ⊢ ( 𝐺 ∈ USGraph → ( ¬ ( ( ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑢 , 𝑁 } ) = ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑢 , 𝑁 } ) ∧ 𝑁 = 𝑁 ) ∨ ( ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑢 , 𝑁 } ) = 𝑁 ∧ 𝑁 = ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑢 , 𝑁 } ) ) ) → ¬ ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑧 , 𝑁 } ) = ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑧 , 𝑁 } ) ) ) |
| 56 | 55 | adantr | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉 ) → ( ¬ ( ( ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑢 , 𝑁 } ) = ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑢 , 𝑁 } ) ∧ 𝑁 = 𝑁 ) ∨ ( ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑢 , 𝑁 } ) = 𝑁 ∧ 𝑁 = ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑢 , 𝑁 } ) ) ) → ¬ ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑧 , 𝑁 } ) = ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑧 , 𝑁 } ) ) ) |
| 57 | 42 56 | sylbid | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉 ) → ( ¬ { ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑢 , 𝑁 } ) , 𝑁 } = { ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑢 , 𝑁 } ) , 𝑁 } → ¬ ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑧 , 𝑁 } ) = ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑧 , 𝑁 } ) ) ) |
| 58 | 57 | adantr | ⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( ¬ { ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑢 , 𝑁 } ) , 𝑁 } = { ( ℩ 𝑢 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑢 , 𝑁 } ) , 𝑁 } → ¬ ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑧 , 𝑁 } ) = ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑧 , 𝑁 } ) ) ) |
| 59 | 33 58 | sylbid | ⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( ¬ ( 𝐸 ‘ 𝑦 ) = ( 𝐸 ‘ 𝑤 ) → ¬ ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑧 , 𝑁 } ) = ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑧 , 𝑁 } ) ) ) |
| 60 | 18 59 | sylbid | ⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( ¬ 𝑦 = 𝑤 → ¬ ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑧 , 𝑁 } ) = ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑧 , 𝑁 } ) ) ) |
| 61 | 60 | con4d | ⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑧 , 𝑁 } ) = ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑧 , 𝑁 } ) → 𝑦 = 𝑤 ) ) |
| 62 | 61 | ralrimivva | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉 ) → ∀ 𝑦 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑧 , 𝑁 } ) = ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑧 , 𝑁 } ) → 𝑦 = 𝑤 ) ) |
| 63 | fveqeq2 | ⊢ ( 𝑦 = 𝑤 → ( ( 𝐸 ‘ 𝑦 ) = { 𝑧 , 𝑁 } ↔ ( 𝐸 ‘ 𝑤 ) = { 𝑧 , 𝑁 } ) ) | |
| 64 | 63 | riotabidv | ⊢ ( 𝑦 = 𝑤 → ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑧 , 𝑁 } ) = ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑧 , 𝑁 } ) ) |
| 65 | 4 64 | f1mpt | ⊢ ( 𝐹 : 𝐴 –1-1→ 𝑉 ↔ ( ∀ 𝑦 ∈ 𝐴 ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑧 , 𝑁 } ) ∈ 𝑉 ∧ ∀ 𝑦 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑧 , 𝑁 } ) = ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑤 ) = { 𝑧 , 𝑁 } ) → 𝑦 = 𝑤 ) ) ) |
| 66 | 7 62 65 | sylanbrc | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉 ) → 𝐹 : 𝐴 –1-1→ 𝑉 ) |