This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a simple graph, the mapping of edges having a fixed endpoint to the other vertex of the edge is a one-to-one function into the set of vertices. (Contributed by Alexander van der Vekens, 4-Jan-2018) (Revised by AV, 18-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | usgredg2v.v | |- V = ( Vtx ` G ) |
|
| usgredg2v.e | |- E = ( iEdg ` G ) |
||
| usgredg2v.a | |- A = { x e. dom E | N e. ( E ` x ) } |
||
| usgredg2v.f | |- F = ( y e. A |-> ( iota_ z e. V ( E ` y ) = { z , N } ) ) |
||
| Assertion | usgredg2v | |- ( ( G e. USGraph /\ N e. V ) -> F : A -1-1-> V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgredg2v.v | |- V = ( Vtx ` G ) |
|
| 2 | usgredg2v.e | |- E = ( iEdg ` G ) |
|
| 3 | usgredg2v.a | |- A = { x e. dom E | N e. ( E ` x ) } |
|
| 4 | usgredg2v.f | |- F = ( y e. A |-> ( iota_ z e. V ( E ` y ) = { z , N } ) ) |
|
| 5 | 1 2 3 | usgredg2vlem1 | |- ( ( G e. USGraph /\ y e. A ) -> ( iota_ z e. V ( E ` y ) = { z , N } ) e. V ) |
| 6 | 5 | ralrimiva | |- ( G e. USGraph -> A. y e. A ( iota_ z e. V ( E ` y ) = { z , N } ) e. V ) |
| 7 | 6 | adantr | |- ( ( G e. USGraph /\ N e. V ) -> A. y e. A ( iota_ z e. V ( E ` y ) = { z , N } ) e. V ) |
| 8 | 2 | usgrf1 | |- ( G e. USGraph -> E : dom E -1-1-> ran E ) |
| 9 | 8 | adantr | |- ( ( G e. USGraph /\ N e. V ) -> E : dom E -1-1-> ran E ) |
| 10 | elrabi | |- ( y e. { x e. dom E | N e. ( E ` x ) } -> y e. dom E ) |
|
| 11 | 10 3 | eleq2s | |- ( y e. A -> y e. dom E ) |
| 12 | elrabi | |- ( w e. { x e. dom E | N e. ( E ` x ) } -> w e. dom E ) |
|
| 13 | 12 3 | eleq2s | |- ( w e. A -> w e. dom E ) |
| 14 | 11 13 | anim12i | |- ( ( y e. A /\ w e. A ) -> ( y e. dom E /\ w e. dom E ) ) |
| 15 | f1fveq | |- ( ( E : dom E -1-1-> ran E /\ ( y e. dom E /\ w e. dom E ) ) -> ( ( E ` y ) = ( E ` w ) <-> y = w ) ) |
|
| 16 | 9 14 15 | syl2an | |- ( ( ( G e. USGraph /\ N e. V ) /\ ( y e. A /\ w e. A ) ) -> ( ( E ` y ) = ( E ` w ) <-> y = w ) ) |
| 17 | 16 | bicomd | |- ( ( ( G e. USGraph /\ N e. V ) /\ ( y e. A /\ w e. A ) ) -> ( y = w <-> ( E ` y ) = ( E ` w ) ) ) |
| 18 | 17 | notbid | |- ( ( ( G e. USGraph /\ N e. V ) /\ ( y e. A /\ w e. A ) ) -> ( -. y = w <-> -. ( E ` y ) = ( E ` w ) ) ) |
| 19 | simpl | |- ( ( G e. USGraph /\ N e. V ) -> G e. USGraph ) |
|
| 20 | simpl | |- ( ( y e. A /\ w e. A ) -> y e. A ) |
|
| 21 | 19 20 | anim12i | |- ( ( ( G e. USGraph /\ N e. V ) /\ ( y e. A /\ w e. A ) ) -> ( G e. USGraph /\ y e. A ) ) |
| 22 | preq1 | |- ( u = z -> { u , N } = { z , N } ) |
|
| 23 | 22 | eqeq2d | |- ( u = z -> ( ( E ` y ) = { u , N } <-> ( E ` y ) = { z , N } ) ) |
| 24 | 23 | cbvriotavw | |- ( iota_ u e. V ( E ` y ) = { u , N } ) = ( iota_ z e. V ( E ` y ) = { z , N } ) |
| 25 | 1 2 3 | usgredg2vlem2 | |- ( ( G e. USGraph /\ y e. A ) -> ( ( iota_ u e. V ( E ` y ) = { u , N } ) = ( iota_ z e. V ( E ` y ) = { z , N } ) -> ( E ` y ) = { ( iota_ u e. V ( E ` y ) = { u , N } ) , N } ) ) |
| 26 | 21 24 25 | mpisyl | |- ( ( ( G e. USGraph /\ N e. V ) /\ ( y e. A /\ w e. A ) ) -> ( E ` y ) = { ( iota_ u e. V ( E ` y ) = { u , N } ) , N } ) |
| 27 | an3 | |- ( ( ( G e. USGraph /\ N e. V ) /\ ( y e. A /\ w e. A ) ) -> ( G e. USGraph /\ w e. A ) ) |
|
| 28 | 22 | eqeq2d | |- ( u = z -> ( ( E ` w ) = { u , N } <-> ( E ` w ) = { z , N } ) ) |
| 29 | 28 | cbvriotavw | |- ( iota_ u e. V ( E ` w ) = { u , N } ) = ( iota_ z e. V ( E ` w ) = { z , N } ) |
| 30 | 1 2 3 | usgredg2vlem2 | |- ( ( G e. USGraph /\ w e. A ) -> ( ( iota_ u e. V ( E ` w ) = { u , N } ) = ( iota_ z e. V ( E ` w ) = { z , N } ) -> ( E ` w ) = { ( iota_ u e. V ( E ` w ) = { u , N } ) , N } ) ) |
| 31 | 27 29 30 | mpisyl | |- ( ( ( G e. USGraph /\ N e. V ) /\ ( y e. A /\ w e. A ) ) -> ( E ` w ) = { ( iota_ u e. V ( E ` w ) = { u , N } ) , N } ) |
| 32 | 26 31 | eqeq12d | |- ( ( ( G e. USGraph /\ N e. V ) /\ ( y e. A /\ w e. A ) ) -> ( ( E ` y ) = ( E ` w ) <-> { ( iota_ u e. V ( E ` y ) = { u , N } ) , N } = { ( iota_ u e. V ( E ` w ) = { u , N } ) , N } ) ) |
| 33 | 32 | notbid | |- ( ( ( G e. USGraph /\ N e. V ) /\ ( y e. A /\ w e. A ) ) -> ( -. ( E ` y ) = ( E ` w ) <-> -. { ( iota_ u e. V ( E ` y ) = { u , N } ) , N } = { ( iota_ u e. V ( E ` w ) = { u , N } ) , N } ) ) |
| 34 | riotaex | |- ( iota_ u e. V ( E ` y ) = { u , N } ) e. _V |
|
| 35 | 34 | a1i | |- ( N e. V -> ( iota_ u e. V ( E ` y ) = { u , N } ) e. _V ) |
| 36 | id | |- ( N e. V -> N e. V ) |
|
| 37 | riotaex | |- ( iota_ u e. V ( E ` w ) = { u , N } ) e. _V |
|
| 38 | 37 | a1i | |- ( N e. V -> ( iota_ u e. V ( E ` w ) = { u , N } ) e. _V ) |
| 39 | preq12bg | |- ( ( ( ( iota_ u e. V ( E ` y ) = { u , N } ) e. _V /\ N e. V ) /\ ( ( iota_ u e. V ( E ` w ) = { u , N } ) e. _V /\ N e. V ) ) -> ( { ( iota_ u e. V ( E ` y ) = { u , N } ) , N } = { ( iota_ u e. V ( E ` w ) = { u , N } ) , N } <-> ( ( ( iota_ u e. V ( E ` y ) = { u , N } ) = ( iota_ u e. V ( E ` w ) = { u , N } ) /\ N = N ) \/ ( ( iota_ u e. V ( E ` y ) = { u , N } ) = N /\ N = ( iota_ u e. V ( E ` w ) = { u , N } ) ) ) ) ) |
|
| 40 | 35 36 38 36 39 | syl22anc | |- ( N e. V -> ( { ( iota_ u e. V ( E ` y ) = { u , N } ) , N } = { ( iota_ u e. V ( E ` w ) = { u , N } ) , N } <-> ( ( ( iota_ u e. V ( E ` y ) = { u , N } ) = ( iota_ u e. V ( E ` w ) = { u , N } ) /\ N = N ) \/ ( ( iota_ u e. V ( E ` y ) = { u , N } ) = N /\ N = ( iota_ u e. V ( E ` w ) = { u , N } ) ) ) ) ) |
| 41 | 40 | notbid | |- ( N e. V -> ( -. { ( iota_ u e. V ( E ` y ) = { u , N } ) , N } = { ( iota_ u e. V ( E ` w ) = { u , N } ) , N } <-> -. ( ( ( iota_ u e. V ( E ` y ) = { u , N } ) = ( iota_ u e. V ( E ` w ) = { u , N } ) /\ N = N ) \/ ( ( iota_ u e. V ( E ` y ) = { u , N } ) = N /\ N = ( iota_ u e. V ( E ` w ) = { u , N } ) ) ) ) ) |
| 42 | 41 | adantl | |- ( ( G e. USGraph /\ N e. V ) -> ( -. { ( iota_ u e. V ( E ` y ) = { u , N } ) , N } = { ( iota_ u e. V ( E ` w ) = { u , N } ) , N } <-> -. ( ( ( iota_ u e. V ( E ` y ) = { u , N } ) = ( iota_ u e. V ( E ` w ) = { u , N } ) /\ N = N ) \/ ( ( iota_ u e. V ( E ` y ) = { u , N } ) = N /\ N = ( iota_ u e. V ( E ` w ) = { u , N } ) ) ) ) ) |
| 43 | ioran | |- ( -. ( ( ( iota_ u e. V ( E ` y ) = { u , N } ) = ( iota_ u e. V ( E ` w ) = { u , N } ) /\ N = N ) \/ ( ( iota_ u e. V ( E ` y ) = { u , N } ) = N /\ N = ( iota_ u e. V ( E ` w ) = { u , N } ) ) ) <-> ( -. ( ( iota_ u e. V ( E ` y ) = { u , N } ) = ( iota_ u e. V ( E ` w ) = { u , N } ) /\ N = N ) /\ -. ( ( iota_ u e. V ( E ` y ) = { u , N } ) = N /\ N = ( iota_ u e. V ( E ` w ) = { u , N } ) ) ) ) |
|
| 44 | ianor | |- ( -. ( ( iota_ u e. V ( E ` y ) = { u , N } ) = ( iota_ u e. V ( E ` w ) = { u , N } ) /\ N = N ) <-> ( -. ( iota_ u e. V ( E ` y ) = { u , N } ) = ( iota_ u e. V ( E ` w ) = { u , N } ) \/ -. N = N ) ) |
|
| 45 | 24 29 | eqeq12i | |- ( ( iota_ u e. V ( E ` y ) = { u , N } ) = ( iota_ u e. V ( E ` w ) = { u , N } ) <-> ( iota_ z e. V ( E ` y ) = { z , N } ) = ( iota_ z e. V ( E ` w ) = { z , N } ) ) |
| 46 | 45 | notbii | |- ( -. ( iota_ u e. V ( E ` y ) = { u , N } ) = ( iota_ u e. V ( E ` w ) = { u , N } ) <-> -. ( iota_ z e. V ( E ` y ) = { z , N } ) = ( iota_ z e. V ( E ` w ) = { z , N } ) ) |
| 47 | 46 | biimpi | |- ( -. ( iota_ u e. V ( E ` y ) = { u , N } ) = ( iota_ u e. V ( E ` w ) = { u , N } ) -> -. ( iota_ z e. V ( E ` y ) = { z , N } ) = ( iota_ z e. V ( E ` w ) = { z , N } ) ) |
| 48 | 47 | a1d | |- ( -. ( iota_ u e. V ( E ` y ) = { u , N } ) = ( iota_ u e. V ( E ` w ) = { u , N } ) -> ( G e. USGraph -> -. ( iota_ z e. V ( E ` y ) = { z , N } ) = ( iota_ z e. V ( E ` w ) = { z , N } ) ) ) |
| 49 | eqid | |- N = N |
|
| 50 | 49 | pm2.24i | |- ( -. N = N -> ( G e. USGraph -> -. ( iota_ z e. V ( E ` y ) = { z , N } ) = ( iota_ z e. V ( E ` w ) = { z , N } ) ) ) |
| 51 | 48 50 | jaoi | |- ( ( -. ( iota_ u e. V ( E ` y ) = { u , N } ) = ( iota_ u e. V ( E ` w ) = { u , N } ) \/ -. N = N ) -> ( G e. USGraph -> -. ( iota_ z e. V ( E ` y ) = { z , N } ) = ( iota_ z e. V ( E ` w ) = { z , N } ) ) ) |
| 52 | 44 51 | sylbi | |- ( -. ( ( iota_ u e. V ( E ` y ) = { u , N } ) = ( iota_ u e. V ( E ` w ) = { u , N } ) /\ N = N ) -> ( G e. USGraph -> -. ( iota_ z e. V ( E ` y ) = { z , N } ) = ( iota_ z e. V ( E ` w ) = { z , N } ) ) ) |
| 53 | 52 | adantr | |- ( ( -. ( ( iota_ u e. V ( E ` y ) = { u , N } ) = ( iota_ u e. V ( E ` w ) = { u , N } ) /\ N = N ) /\ -. ( ( iota_ u e. V ( E ` y ) = { u , N } ) = N /\ N = ( iota_ u e. V ( E ` w ) = { u , N } ) ) ) -> ( G e. USGraph -> -. ( iota_ z e. V ( E ` y ) = { z , N } ) = ( iota_ z e. V ( E ` w ) = { z , N } ) ) ) |
| 54 | 43 53 | sylbi | |- ( -. ( ( ( iota_ u e. V ( E ` y ) = { u , N } ) = ( iota_ u e. V ( E ` w ) = { u , N } ) /\ N = N ) \/ ( ( iota_ u e. V ( E ` y ) = { u , N } ) = N /\ N = ( iota_ u e. V ( E ` w ) = { u , N } ) ) ) -> ( G e. USGraph -> -. ( iota_ z e. V ( E ` y ) = { z , N } ) = ( iota_ z e. V ( E ` w ) = { z , N } ) ) ) |
| 55 | 54 | com12 | |- ( G e. USGraph -> ( -. ( ( ( iota_ u e. V ( E ` y ) = { u , N } ) = ( iota_ u e. V ( E ` w ) = { u , N } ) /\ N = N ) \/ ( ( iota_ u e. V ( E ` y ) = { u , N } ) = N /\ N = ( iota_ u e. V ( E ` w ) = { u , N } ) ) ) -> -. ( iota_ z e. V ( E ` y ) = { z , N } ) = ( iota_ z e. V ( E ` w ) = { z , N } ) ) ) |
| 56 | 55 | adantr | |- ( ( G e. USGraph /\ N e. V ) -> ( -. ( ( ( iota_ u e. V ( E ` y ) = { u , N } ) = ( iota_ u e. V ( E ` w ) = { u , N } ) /\ N = N ) \/ ( ( iota_ u e. V ( E ` y ) = { u , N } ) = N /\ N = ( iota_ u e. V ( E ` w ) = { u , N } ) ) ) -> -. ( iota_ z e. V ( E ` y ) = { z , N } ) = ( iota_ z e. V ( E ` w ) = { z , N } ) ) ) |
| 57 | 42 56 | sylbid | |- ( ( G e. USGraph /\ N e. V ) -> ( -. { ( iota_ u e. V ( E ` y ) = { u , N } ) , N } = { ( iota_ u e. V ( E ` w ) = { u , N } ) , N } -> -. ( iota_ z e. V ( E ` y ) = { z , N } ) = ( iota_ z e. V ( E ` w ) = { z , N } ) ) ) |
| 58 | 57 | adantr | |- ( ( ( G e. USGraph /\ N e. V ) /\ ( y e. A /\ w e. A ) ) -> ( -. { ( iota_ u e. V ( E ` y ) = { u , N } ) , N } = { ( iota_ u e. V ( E ` w ) = { u , N } ) , N } -> -. ( iota_ z e. V ( E ` y ) = { z , N } ) = ( iota_ z e. V ( E ` w ) = { z , N } ) ) ) |
| 59 | 33 58 | sylbid | |- ( ( ( G e. USGraph /\ N e. V ) /\ ( y e. A /\ w e. A ) ) -> ( -. ( E ` y ) = ( E ` w ) -> -. ( iota_ z e. V ( E ` y ) = { z , N } ) = ( iota_ z e. V ( E ` w ) = { z , N } ) ) ) |
| 60 | 18 59 | sylbid | |- ( ( ( G e. USGraph /\ N e. V ) /\ ( y e. A /\ w e. A ) ) -> ( -. y = w -> -. ( iota_ z e. V ( E ` y ) = { z , N } ) = ( iota_ z e. V ( E ` w ) = { z , N } ) ) ) |
| 61 | 60 | con4d | |- ( ( ( G e. USGraph /\ N e. V ) /\ ( y e. A /\ w e. A ) ) -> ( ( iota_ z e. V ( E ` y ) = { z , N } ) = ( iota_ z e. V ( E ` w ) = { z , N } ) -> y = w ) ) |
| 62 | 61 | ralrimivva | |- ( ( G e. USGraph /\ N e. V ) -> A. y e. A A. w e. A ( ( iota_ z e. V ( E ` y ) = { z , N } ) = ( iota_ z e. V ( E ` w ) = { z , N } ) -> y = w ) ) |
| 63 | fveqeq2 | |- ( y = w -> ( ( E ` y ) = { z , N } <-> ( E ` w ) = { z , N } ) ) |
|
| 64 | 63 | riotabidv | |- ( y = w -> ( iota_ z e. V ( E ` y ) = { z , N } ) = ( iota_ z e. V ( E ` w ) = { z , N } ) ) |
| 65 | 4 64 | f1mpt | |- ( F : A -1-1-> V <-> ( A. y e. A ( iota_ z e. V ( E ` y ) = { z , N } ) e. V /\ A. y e. A A. w e. A ( ( iota_ z e. V ( E ` y ) = { z , N } ) = ( iota_ z e. V ( E ` w ) = { z , N } ) -> y = w ) ) ) |
| 66 | 7 62 65 | sylanbrc | |- ( ( G e. USGraph /\ N e. V ) -> F : A -1-1-> V ) |