This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate version of usgredgleord , not using the notation ( EdgG ) . In a simple graph the number of edges which contain a given vertex is not greater than the number of vertices. (Contributed by Alexander van der Vekens, 4-Jan-2018) (Revised by AV, 18-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | usgredg2v.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| usgredg2v.e | ⊢ 𝐸 = ( iEdg ‘ 𝐺 ) | ||
| Assertion | usgriedgleord | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉 ) → ( ♯ ‘ { 𝑥 ∈ dom 𝐸 ∣ 𝑁 ∈ ( 𝐸 ‘ 𝑥 ) } ) ≤ ( ♯ ‘ 𝑉 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgredg2v.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | usgredg2v.e | ⊢ 𝐸 = ( iEdg ‘ 𝐺 ) | |
| 3 | 1 | fvexi | ⊢ 𝑉 ∈ V |
| 4 | eqid | ⊢ { 𝑥 ∈ dom 𝐸 ∣ 𝑁 ∈ ( 𝐸 ‘ 𝑥 ) } = { 𝑥 ∈ dom 𝐸 ∣ 𝑁 ∈ ( 𝐸 ‘ 𝑥 ) } | |
| 5 | eqid | ⊢ ( 𝑦 ∈ { 𝑥 ∈ dom 𝐸 ∣ 𝑁 ∈ ( 𝐸 ‘ 𝑥 ) } ↦ ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑧 , 𝑁 } ) ) = ( 𝑦 ∈ { 𝑥 ∈ dom 𝐸 ∣ 𝑁 ∈ ( 𝐸 ‘ 𝑥 ) } ↦ ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑧 , 𝑁 } ) ) | |
| 6 | 1 2 4 5 | usgredg2v | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉 ) → ( 𝑦 ∈ { 𝑥 ∈ dom 𝐸 ∣ 𝑁 ∈ ( 𝐸 ‘ 𝑥 ) } ↦ ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑧 , 𝑁 } ) ) : { 𝑥 ∈ dom 𝐸 ∣ 𝑁 ∈ ( 𝐸 ‘ 𝑥 ) } –1-1→ 𝑉 ) |
| 7 | f1domg | ⊢ ( 𝑉 ∈ V → ( ( 𝑦 ∈ { 𝑥 ∈ dom 𝐸 ∣ 𝑁 ∈ ( 𝐸 ‘ 𝑥 ) } ↦ ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑦 ) = { 𝑧 , 𝑁 } ) ) : { 𝑥 ∈ dom 𝐸 ∣ 𝑁 ∈ ( 𝐸 ‘ 𝑥 ) } –1-1→ 𝑉 → { 𝑥 ∈ dom 𝐸 ∣ 𝑁 ∈ ( 𝐸 ‘ 𝑥 ) } ≼ 𝑉 ) ) | |
| 8 | 3 6 7 | mpsyl | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉 ) → { 𝑥 ∈ dom 𝐸 ∣ 𝑁 ∈ ( 𝐸 ‘ 𝑥 ) } ≼ 𝑉 ) |
| 9 | hashdomi | ⊢ ( { 𝑥 ∈ dom 𝐸 ∣ 𝑁 ∈ ( 𝐸 ‘ 𝑥 ) } ≼ 𝑉 → ( ♯ ‘ { 𝑥 ∈ dom 𝐸 ∣ 𝑁 ∈ ( 𝐸 ‘ 𝑥 ) } ) ≤ ( ♯ ‘ 𝑉 ) ) | |
| 10 | 8 9 | syl | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉 ) → ( ♯ ‘ { 𝑥 ∈ dom 𝐸 ∣ 𝑁 ∈ ( 𝐸 ‘ 𝑥 ) } ) ≤ ( ♯ ‘ 𝑉 ) ) |