This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 2 for usgredg2v . (Contributed by Alexander van der Vekens, 4-Jan-2018) (Revised by AV, 18-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | usgredg2v.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| usgredg2v.e | ⊢ 𝐸 = ( iEdg ‘ 𝐺 ) | ||
| usgredg2v.a | ⊢ 𝐴 = { 𝑥 ∈ dom 𝐸 ∣ 𝑁 ∈ ( 𝐸 ‘ 𝑥 ) } | ||
| Assertion | usgredg2vlem2 | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑌 ∈ 𝐴 ) → ( 𝐼 = ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑌 ) = { 𝑧 , 𝑁 } ) → ( 𝐸 ‘ 𝑌 ) = { 𝐼 , 𝑁 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgredg2v.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | usgredg2v.e | ⊢ 𝐸 = ( iEdg ‘ 𝐺 ) | |
| 3 | usgredg2v.a | ⊢ 𝐴 = { 𝑥 ∈ dom 𝐸 ∣ 𝑁 ∈ ( 𝐸 ‘ 𝑥 ) } | |
| 4 | fveq2 | ⊢ ( 𝑥 = 𝑌 → ( 𝐸 ‘ 𝑥 ) = ( 𝐸 ‘ 𝑌 ) ) | |
| 5 | 4 | eleq2d | ⊢ ( 𝑥 = 𝑌 → ( 𝑁 ∈ ( 𝐸 ‘ 𝑥 ) ↔ 𝑁 ∈ ( 𝐸 ‘ 𝑌 ) ) ) |
| 6 | 5 3 | elrab2 | ⊢ ( 𝑌 ∈ 𝐴 ↔ ( 𝑌 ∈ dom 𝐸 ∧ 𝑁 ∈ ( 𝐸 ‘ 𝑌 ) ) ) |
| 7 | 6 | biimpi | ⊢ ( 𝑌 ∈ 𝐴 → ( 𝑌 ∈ dom 𝐸 ∧ 𝑁 ∈ ( 𝐸 ‘ 𝑌 ) ) ) |
| 8 | 1 2 | usgredgreu | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑌 ∈ dom 𝐸 ∧ 𝑁 ∈ ( 𝐸 ‘ 𝑌 ) ) → ∃! 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑌 ) = { 𝑁 , 𝑧 } ) |
| 9 | 8 | 3expb | ⊢ ( ( 𝐺 ∈ USGraph ∧ ( 𝑌 ∈ dom 𝐸 ∧ 𝑁 ∈ ( 𝐸 ‘ 𝑌 ) ) ) → ∃! 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑌 ) = { 𝑁 , 𝑧 } ) |
| 10 | 1 2 3 | usgredg2vlem1 | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑌 ∈ 𝐴 ) → ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑌 ) = { 𝑧 , 𝑁 } ) ∈ 𝑉 ) |
| 11 | 10 | adantlr | ⊢ ( ( ( 𝐺 ∈ USGraph ∧ ( 𝑌 ∈ dom 𝐸 ∧ 𝑁 ∈ ( 𝐸 ‘ 𝑌 ) ) ) ∧ 𝑌 ∈ 𝐴 ) → ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑌 ) = { 𝑧 , 𝑁 } ) ∈ 𝑉 ) |
| 12 | 11 | ad4ant23 | ⊢ ( ( ( ( ∃! 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑌 ) = { 𝑁 , 𝑧 } ∧ ( 𝐺 ∈ USGraph ∧ ( 𝑌 ∈ dom 𝐸 ∧ 𝑁 ∈ ( 𝐸 ‘ 𝑌 ) ) ) ) ∧ 𝑌 ∈ 𝐴 ) ∧ 𝐼 = ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑌 ) = { 𝑧 , 𝑁 } ) ) → ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑌 ) = { 𝑧 , 𝑁 } ) ∈ 𝑉 ) |
| 13 | eleq1 | ⊢ ( 𝐼 = ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑌 ) = { 𝑧 , 𝑁 } ) → ( 𝐼 ∈ 𝑉 ↔ ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑌 ) = { 𝑧 , 𝑁 } ) ∈ 𝑉 ) ) | |
| 14 | 13 | adantl | ⊢ ( ( ( ( ∃! 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑌 ) = { 𝑁 , 𝑧 } ∧ ( 𝐺 ∈ USGraph ∧ ( 𝑌 ∈ dom 𝐸 ∧ 𝑁 ∈ ( 𝐸 ‘ 𝑌 ) ) ) ) ∧ 𝑌 ∈ 𝐴 ) ∧ 𝐼 = ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑌 ) = { 𝑧 , 𝑁 } ) ) → ( 𝐼 ∈ 𝑉 ↔ ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑌 ) = { 𝑧 , 𝑁 } ) ∈ 𝑉 ) ) |
| 15 | 12 14 | mpbird | ⊢ ( ( ( ( ∃! 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑌 ) = { 𝑁 , 𝑧 } ∧ ( 𝐺 ∈ USGraph ∧ ( 𝑌 ∈ dom 𝐸 ∧ 𝑁 ∈ ( 𝐸 ‘ 𝑌 ) ) ) ) ∧ 𝑌 ∈ 𝐴 ) ∧ 𝐼 = ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑌 ) = { 𝑧 , 𝑁 } ) ) → 𝐼 ∈ 𝑉 ) |
| 16 | prcom | ⊢ { 𝑁 , 𝑧 } = { 𝑧 , 𝑁 } | |
| 17 | 16 | eqeq2i | ⊢ ( ( 𝐸 ‘ 𝑌 ) = { 𝑁 , 𝑧 } ↔ ( 𝐸 ‘ 𝑌 ) = { 𝑧 , 𝑁 } ) |
| 18 | 17 | reubii | ⊢ ( ∃! 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑌 ) = { 𝑁 , 𝑧 } ↔ ∃! 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑌 ) = { 𝑧 , 𝑁 } ) |
| 19 | 18 | biimpi | ⊢ ( ∃! 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑌 ) = { 𝑁 , 𝑧 } → ∃! 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑌 ) = { 𝑧 , 𝑁 } ) |
| 20 | 19 | ad3antrrr | ⊢ ( ( ( ( ∃! 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑌 ) = { 𝑁 , 𝑧 } ∧ ( 𝐺 ∈ USGraph ∧ ( 𝑌 ∈ dom 𝐸 ∧ 𝑁 ∈ ( 𝐸 ‘ 𝑌 ) ) ) ) ∧ 𝑌 ∈ 𝐴 ) ∧ 𝐼 = ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑌 ) = { 𝑧 , 𝑁 } ) ) → ∃! 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑌 ) = { 𝑧 , 𝑁 } ) |
| 21 | preq1 | ⊢ ( 𝑧 = 𝐼 → { 𝑧 , 𝑁 } = { 𝐼 , 𝑁 } ) | |
| 22 | 21 | eqeq2d | ⊢ ( 𝑧 = 𝐼 → ( ( 𝐸 ‘ 𝑌 ) = { 𝑧 , 𝑁 } ↔ ( 𝐸 ‘ 𝑌 ) = { 𝐼 , 𝑁 } ) ) |
| 23 | 22 | riota2 | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ ∃! 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑌 ) = { 𝑧 , 𝑁 } ) → ( ( 𝐸 ‘ 𝑌 ) = { 𝐼 , 𝑁 } ↔ ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑌 ) = { 𝑧 , 𝑁 } ) = 𝐼 ) ) |
| 24 | 15 20 23 | syl2anc | ⊢ ( ( ( ( ∃! 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑌 ) = { 𝑁 , 𝑧 } ∧ ( 𝐺 ∈ USGraph ∧ ( 𝑌 ∈ dom 𝐸 ∧ 𝑁 ∈ ( 𝐸 ‘ 𝑌 ) ) ) ) ∧ 𝑌 ∈ 𝐴 ) ∧ 𝐼 = ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑌 ) = { 𝑧 , 𝑁 } ) ) → ( ( 𝐸 ‘ 𝑌 ) = { 𝐼 , 𝑁 } ↔ ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑌 ) = { 𝑧 , 𝑁 } ) = 𝐼 ) ) |
| 25 | 24 | exbiri | ⊢ ( ( ( ∃! 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑌 ) = { 𝑁 , 𝑧 } ∧ ( 𝐺 ∈ USGraph ∧ ( 𝑌 ∈ dom 𝐸 ∧ 𝑁 ∈ ( 𝐸 ‘ 𝑌 ) ) ) ) ∧ 𝑌 ∈ 𝐴 ) → ( 𝐼 = ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑌 ) = { 𝑧 , 𝑁 } ) → ( ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑌 ) = { 𝑧 , 𝑁 } ) = 𝐼 → ( 𝐸 ‘ 𝑌 ) = { 𝐼 , 𝑁 } ) ) ) |
| 26 | 25 | com13 | ⊢ ( ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑌 ) = { 𝑧 , 𝑁 } ) = 𝐼 → ( 𝐼 = ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑌 ) = { 𝑧 , 𝑁 } ) → ( ( ( ∃! 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑌 ) = { 𝑁 , 𝑧 } ∧ ( 𝐺 ∈ USGraph ∧ ( 𝑌 ∈ dom 𝐸 ∧ 𝑁 ∈ ( 𝐸 ‘ 𝑌 ) ) ) ) ∧ 𝑌 ∈ 𝐴 ) → ( 𝐸 ‘ 𝑌 ) = { 𝐼 , 𝑁 } ) ) ) |
| 27 | 26 | eqcoms | ⊢ ( 𝐼 = ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑌 ) = { 𝑧 , 𝑁 } ) → ( 𝐼 = ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑌 ) = { 𝑧 , 𝑁 } ) → ( ( ( ∃! 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑌 ) = { 𝑁 , 𝑧 } ∧ ( 𝐺 ∈ USGraph ∧ ( 𝑌 ∈ dom 𝐸 ∧ 𝑁 ∈ ( 𝐸 ‘ 𝑌 ) ) ) ) ∧ 𝑌 ∈ 𝐴 ) → ( 𝐸 ‘ 𝑌 ) = { 𝐼 , 𝑁 } ) ) ) |
| 28 | 27 | pm2.43i | ⊢ ( 𝐼 = ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑌 ) = { 𝑧 , 𝑁 } ) → ( ( ( ∃! 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑌 ) = { 𝑁 , 𝑧 } ∧ ( 𝐺 ∈ USGraph ∧ ( 𝑌 ∈ dom 𝐸 ∧ 𝑁 ∈ ( 𝐸 ‘ 𝑌 ) ) ) ) ∧ 𝑌 ∈ 𝐴 ) → ( 𝐸 ‘ 𝑌 ) = { 𝐼 , 𝑁 } ) ) |
| 29 | 28 | expdcom | ⊢ ( ( ∃! 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑌 ) = { 𝑁 , 𝑧 } ∧ ( 𝐺 ∈ USGraph ∧ ( 𝑌 ∈ dom 𝐸 ∧ 𝑁 ∈ ( 𝐸 ‘ 𝑌 ) ) ) ) → ( 𝑌 ∈ 𝐴 → ( 𝐼 = ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑌 ) = { 𝑧 , 𝑁 } ) → ( 𝐸 ‘ 𝑌 ) = { 𝐼 , 𝑁 } ) ) ) |
| 30 | 9 29 | mpancom | ⊢ ( ( 𝐺 ∈ USGraph ∧ ( 𝑌 ∈ dom 𝐸 ∧ 𝑁 ∈ ( 𝐸 ‘ 𝑌 ) ) ) → ( 𝑌 ∈ 𝐴 → ( 𝐼 = ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑌 ) = { 𝑧 , 𝑁 } ) → ( 𝐸 ‘ 𝑌 ) = { 𝐼 , 𝑁 } ) ) ) |
| 31 | 30 | expcom | ⊢ ( ( 𝑌 ∈ dom 𝐸 ∧ 𝑁 ∈ ( 𝐸 ‘ 𝑌 ) ) → ( 𝐺 ∈ USGraph → ( 𝑌 ∈ 𝐴 → ( 𝐼 = ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑌 ) = { 𝑧 , 𝑁 } ) → ( 𝐸 ‘ 𝑌 ) = { 𝐼 , 𝑁 } ) ) ) ) |
| 32 | 31 | com23 | ⊢ ( ( 𝑌 ∈ dom 𝐸 ∧ 𝑁 ∈ ( 𝐸 ‘ 𝑌 ) ) → ( 𝑌 ∈ 𝐴 → ( 𝐺 ∈ USGraph → ( 𝐼 = ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑌 ) = { 𝑧 , 𝑁 } ) → ( 𝐸 ‘ 𝑌 ) = { 𝐼 , 𝑁 } ) ) ) ) |
| 33 | 7 32 | mpcom | ⊢ ( 𝑌 ∈ 𝐴 → ( 𝐺 ∈ USGraph → ( 𝐼 = ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑌 ) = { 𝑧 , 𝑁 } ) → ( 𝐸 ‘ 𝑌 ) = { 𝐼 , 𝑁 } ) ) ) |
| 34 | 33 | impcom | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑌 ∈ 𝐴 ) → ( 𝐼 = ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑌 ) = { 𝑧 , 𝑁 } ) → ( 𝐸 ‘ 𝑌 ) = { 𝐼 , 𝑁 } ) ) |