This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Express injection for a mapping operation. (Contributed by Mario Carneiro, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | f1mpt.1 | ⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) | |
| f1mpt.2 | ⊢ ( 𝑥 = 𝑦 → 𝐶 = 𝐷 ) | ||
| Assertion | f1mpt | ⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 ↔ ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝐶 = 𝐷 → 𝑥 = 𝑦 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1mpt.1 | ⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) | |
| 2 | f1mpt.2 | ⊢ ( 𝑥 = 𝑦 → 𝐶 = 𝐷 ) | |
| 3 | nfmpt1 | ⊢ Ⅎ 𝑥 ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) | |
| 4 | 1 3 | nfcxfr | ⊢ Ⅎ 𝑥 𝐹 |
| 5 | nfcv | ⊢ Ⅎ 𝑦 𝐹 | |
| 6 | 4 5 | dff13f | ⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 ↔ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
| 7 | 1 | fmpt | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ↔ 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 8 | 7 | anbi1i | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ↔ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
| 9 | 2 | eleq1d | ⊢ ( 𝑥 = 𝑦 → ( 𝐶 ∈ 𝐵 ↔ 𝐷 ∈ 𝐵 ) ) |
| 10 | 9 | cbvralvw | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ↔ ∀ 𝑦 ∈ 𝐴 𝐷 ∈ 𝐵 ) |
| 11 | raaanv | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵 ) ↔ ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐴 𝐷 ∈ 𝐵 ) ) | |
| 12 | 1 | fvmpt2 | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑥 ) = 𝐶 ) |
| 13 | 2 1 | fvmptg | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑦 ) = 𝐷 ) |
| 14 | 12 13 | eqeqan12d | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ) ) → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ↔ 𝐶 = 𝐷 ) ) |
| 15 | 14 | an4s | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵 ) ) → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ↔ 𝐶 = 𝐷 ) ) |
| 16 | 15 | imbi1d | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵 ) ) → ( ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ↔ ( 𝐶 = 𝐷 → 𝑥 = 𝑦 ) ) ) |
| 17 | 16 | ex | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵 ) → ( ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ↔ ( 𝐶 = 𝐷 → 𝑥 = 𝑦 ) ) ) ) |
| 18 | 17 | ralimdva | ⊢ ( 𝑥 ∈ 𝐴 → ( ∀ 𝑦 ∈ 𝐴 ( 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵 ) → ∀ 𝑦 ∈ 𝐴 ( ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ↔ ( 𝐶 = 𝐷 → 𝑥 = 𝑦 ) ) ) ) |
| 19 | ralbi | ⊢ ( ∀ 𝑦 ∈ 𝐴 ( ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ↔ ( 𝐶 = 𝐷 → 𝑥 = 𝑦 ) ) → ( ∀ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑦 ∈ 𝐴 ( 𝐶 = 𝐷 → 𝑥 = 𝑦 ) ) ) | |
| 20 | 18 19 | syl6 | ⊢ ( 𝑥 ∈ 𝐴 → ( ∀ 𝑦 ∈ 𝐴 ( 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵 ) → ( ∀ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑦 ∈ 𝐴 ( 𝐶 = 𝐷 → 𝑥 = 𝑦 ) ) ) ) |
| 21 | 20 | ralimia | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵 ) → ∀ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑦 ∈ 𝐴 ( 𝐶 = 𝐷 → 𝑥 = 𝑦 ) ) ) |
| 22 | ralbi | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑦 ∈ 𝐴 ( 𝐶 = 𝐷 → 𝑥 = 𝑦 ) ) → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝐶 = 𝐷 → 𝑥 = 𝑦 ) ) ) | |
| 23 | 21 22 | syl | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵 ) → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝐶 = 𝐷 → 𝑥 = 𝑦 ) ) ) |
| 24 | 11 23 | sylbir | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐴 𝐷 ∈ 𝐵 ) → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝐶 = 𝐷 → 𝑥 = 𝑦 ) ) ) |
| 25 | 10 24 | sylan2b | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ) → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝐶 = 𝐷 → 𝑥 = 𝑦 ) ) ) |
| 26 | 25 | anidms | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝐶 = 𝐷 → 𝑥 = 𝑦 ) ) ) |
| 27 | 26 | pm5.32i | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ↔ ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝐶 = 𝐷 → 𝑥 = 𝑦 ) ) ) |
| 28 | 6 8 27 | 3bitr2i | ⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 ↔ ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝐶 = 𝐷 → 𝑥 = 𝑦 ) ) ) |