This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 1 for usgredg2v . (Contributed by Alexander van der Vekens, 4-Jan-2018) (Revised by AV, 18-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | usgredg2v.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| usgredg2v.e | ⊢ 𝐸 = ( iEdg ‘ 𝐺 ) | ||
| usgredg2v.a | ⊢ 𝐴 = { 𝑥 ∈ dom 𝐸 ∣ 𝑁 ∈ ( 𝐸 ‘ 𝑥 ) } | ||
| Assertion | usgredg2vlem1 | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑌 ∈ 𝐴 ) → ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑌 ) = { 𝑧 , 𝑁 } ) ∈ 𝑉 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgredg2v.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | usgredg2v.e | ⊢ 𝐸 = ( iEdg ‘ 𝐺 ) | |
| 3 | usgredg2v.a | ⊢ 𝐴 = { 𝑥 ∈ dom 𝐸 ∣ 𝑁 ∈ ( 𝐸 ‘ 𝑥 ) } | |
| 4 | fveq2 | ⊢ ( 𝑥 = 𝑌 → ( 𝐸 ‘ 𝑥 ) = ( 𝐸 ‘ 𝑌 ) ) | |
| 5 | 4 | eleq2d | ⊢ ( 𝑥 = 𝑌 → ( 𝑁 ∈ ( 𝐸 ‘ 𝑥 ) ↔ 𝑁 ∈ ( 𝐸 ‘ 𝑌 ) ) ) |
| 6 | 5 3 | elrab2 | ⊢ ( 𝑌 ∈ 𝐴 ↔ ( 𝑌 ∈ dom 𝐸 ∧ 𝑁 ∈ ( 𝐸 ‘ 𝑌 ) ) ) |
| 7 | 1 2 | usgredgreu | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑌 ∈ dom 𝐸 ∧ 𝑁 ∈ ( 𝐸 ‘ 𝑌 ) ) → ∃! 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑌 ) = { 𝑁 , 𝑧 } ) |
| 8 | prcom | ⊢ { 𝑁 , 𝑧 } = { 𝑧 , 𝑁 } | |
| 9 | 8 | eqeq2i | ⊢ ( ( 𝐸 ‘ 𝑌 ) = { 𝑁 , 𝑧 } ↔ ( 𝐸 ‘ 𝑌 ) = { 𝑧 , 𝑁 } ) |
| 10 | 9 | reubii | ⊢ ( ∃! 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑌 ) = { 𝑁 , 𝑧 } ↔ ∃! 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑌 ) = { 𝑧 , 𝑁 } ) |
| 11 | 7 10 | sylib | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑌 ∈ dom 𝐸 ∧ 𝑁 ∈ ( 𝐸 ‘ 𝑌 ) ) → ∃! 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑌 ) = { 𝑧 , 𝑁 } ) |
| 12 | 11 | 3expb | ⊢ ( ( 𝐺 ∈ USGraph ∧ ( 𝑌 ∈ dom 𝐸 ∧ 𝑁 ∈ ( 𝐸 ‘ 𝑌 ) ) ) → ∃! 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑌 ) = { 𝑧 , 𝑁 } ) |
| 13 | riotacl | ⊢ ( ∃! 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑌 ) = { 𝑧 , 𝑁 } → ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑌 ) = { 𝑧 , 𝑁 } ) ∈ 𝑉 ) | |
| 14 | 12 13 | syl | ⊢ ( ( 𝐺 ∈ USGraph ∧ ( 𝑌 ∈ dom 𝐸 ∧ 𝑁 ∈ ( 𝐸 ‘ 𝑌 ) ) ) → ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑌 ) = { 𝑧 , 𝑁 } ) ∈ 𝑉 ) |
| 15 | 6 14 | sylan2b | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑌 ∈ 𝐴 ) → ( ℩ 𝑧 ∈ 𝑉 ( 𝐸 ‘ 𝑌 ) = { 𝑧 , 𝑁 } ) ∈ 𝑉 ) |