This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closed form of preq12b . (Contributed by Scott Fenton, 28-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | preq12bg | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌 ) ) → ( { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ↔ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preq1 | ⊢ ( 𝑥 = 𝐴 → { 𝑥 , 𝑦 } = { 𝐴 , 𝑦 } ) | |
| 2 | 1 | eqeq1d | ⊢ ( 𝑥 = 𝐴 → ( { 𝑥 , 𝑦 } = { 𝑧 , 𝐷 } ↔ { 𝐴 , 𝑦 } = { 𝑧 , 𝐷 } ) ) |
| 3 | eqeq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 = 𝑧 ↔ 𝐴 = 𝑧 ) ) | |
| 4 | 3 | anbi1d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝐷 ) ↔ ( 𝐴 = 𝑧 ∧ 𝑦 = 𝐷 ) ) ) |
| 5 | eqeq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 = 𝐷 ↔ 𝐴 = 𝐷 ) ) | |
| 6 | 5 | anbi1d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 = 𝐷 ∧ 𝑦 = 𝑧 ) ↔ ( 𝐴 = 𝐷 ∧ 𝑦 = 𝑧 ) ) ) |
| 7 | 4 6 | orbi12d | ⊢ ( 𝑥 = 𝐴 → ( ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝐷 ) ∨ ( 𝑥 = 𝐷 ∧ 𝑦 = 𝑧 ) ) ↔ ( ( 𝐴 = 𝑧 ∧ 𝑦 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝑦 = 𝑧 ) ) ) ) |
| 8 | 2 7 | bibi12d | ⊢ ( 𝑥 = 𝐴 → ( ( { 𝑥 , 𝑦 } = { 𝑧 , 𝐷 } ↔ ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝐷 ) ∨ ( 𝑥 = 𝐷 ∧ 𝑦 = 𝑧 ) ) ) ↔ ( { 𝐴 , 𝑦 } = { 𝑧 , 𝐷 } ↔ ( ( 𝐴 = 𝑧 ∧ 𝑦 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝑦 = 𝑧 ) ) ) ) ) |
| 9 | 8 | imbi2d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝐷 ∈ 𝑌 → ( { 𝑥 , 𝑦 } = { 𝑧 , 𝐷 } ↔ ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝐷 ) ∨ ( 𝑥 = 𝐷 ∧ 𝑦 = 𝑧 ) ) ) ) ↔ ( 𝐷 ∈ 𝑌 → ( { 𝐴 , 𝑦 } = { 𝑧 , 𝐷 } ↔ ( ( 𝐴 = 𝑧 ∧ 𝑦 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝑦 = 𝑧 ) ) ) ) ) ) |
| 10 | preq2 | ⊢ ( 𝑦 = 𝐵 → { 𝐴 , 𝑦 } = { 𝐴 , 𝐵 } ) | |
| 11 | 10 | eqeq1d | ⊢ ( 𝑦 = 𝐵 → ( { 𝐴 , 𝑦 } = { 𝑧 , 𝐷 } ↔ { 𝐴 , 𝐵 } = { 𝑧 , 𝐷 } ) ) |
| 12 | eqeq1 | ⊢ ( 𝑦 = 𝐵 → ( 𝑦 = 𝐷 ↔ 𝐵 = 𝐷 ) ) | |
| 13 | 12 | anbi2d | ⊢ ( 𝑦 = 𝐵 → ( ( 𝐴 = 𝑧 ∧ 𝑦 = 𝐷 ) ↔ ( 𝐴 = 𝑧 ∧ 𝐵 = 𝐷 ) ) ) |
| 14 | eqeq1 | ⊢ ( 𝑦 = 𝐵 → ( 𝑦 = 𝑧 ↔ 𝐵 = 𝑧 ) ) | |
| 15 | 14 | anbi2d | ⊢ ( 𝑦 = 𝐵 → ( ( 𝐴 = 𝐷 ∧ 𝑦 = 𝑧 ) ↔ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝑧 ) ) ) |
| 16 | 13 15 | orbi12d | ⊢ ( 𝑦 = 𝐵 → ( ( ( 𝐴 = 𝑧 ∧ 𝑦 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝑦 = 𝑧 ) ) ↔ ( ( 𝐴 = 𝑧 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝑧 ) ) ) ) |
| 17 | 11 16 | bibi12d | ⊢ ( 𝑦 = 𝐵 → ( ( { 𝐴 , 𝑦 } = { 𝑧 , 𝐷 } ↔ ( ( 𝐴 = 𝑧 ∧ 𝑦 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝑦 = 𝑧 ) ) ) ↔ ( { 𝐴 , 𝐵 } = { 𝑧 , 𝐷 } ↔ ( ( 𝐴 = 𝑧 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝑧 ) ) ) ) ) |
| 18 | 17 | imbi2d | ⊢ ( 𝑦 = 𝐵 → ( ( 𝐷 ∈ 𝑌 → ( { 𝐴 , 𝑦 } = { 𝑧 , 𝐷 } ↔ ( ( 𝐴 = 𝑧 ∧ 𝑦 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝑦 = 𝑧 ) ) ) ) ↔ ( 𝐷 ∈ 𝑌 → ( { 𝐴 , 𝐵 } = { 𝑧 , 𝐷 } ↔ ( ( 𝐴 = 𝑧 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝑧 ) ) ) ) ) ) |
| 19 | preq1 | ⊢ ( 𝑧 = 𝐶 → { 𝑧 , 𝐷 } = { 𝐶 , 𝐷 } ) | |
| 20 | 19 | eqeq2d | ⊢ ( 𝑧 = 𝐶 → ( { 𝐴 , 𝐵 } = { 𝑧 , 𝐷 } ↔ { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ) ) |
| 21 | eqeq2 | ⊢ ( 𝑧 = 𝐶 → ( 𝐴 = 𝑧 ↔ 𝐴 = 𝐶 ) ) | |
| 22 | 21 | anbi1d | ⊢ ( 𝑧 = 𝐶 → ( ( 𝐴 = 𝑧 ∧ 𝐵 = 𝐷 ) ↔ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) |
| 23 | eqeq2 | ⊢ ( 𝑧 = 𝐶 → ( 𝐵 = 𝑧 ↔ 𝐵 = 𝐶 ) ) | |
| 24 | 23 | anbi2d | ⊢ ( 𝑧 = 𝐶 → ( ( 𝐴 = 𝐷 ∧ 𝐵 = 𝑧 ) ↔ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ) |
| 25 | 22 24 | orbi12d | ⊢ ( 𝑧 = 𝐶 → ( ( ( 𝐴 = 𝑧 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝑧 ) ) ↔ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ) ) |
| 26 | 20 25 | bibi12d | ⊢ ( 𝑧 = 𝐶 → ( ( { 𝐴 , 𝐵 } = { 𝑧 , 𝐷 } ↔ ( ( 𝐴 = 𝑧 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝑧 ) ) ) ↔ ( { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ↔ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ) ) ) |
| 27 | 26 | imbi2d | ⊢ ( 𝑧 = 𝐶 → ( ( 𝐷 ∈ 𝑌 → ( { 𝐴 , 𝐵 } = { 𝑧 , 𝐷 } ↔ ( ( 𝐴 = 𝑧 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝑧 ) ) ) ) ↔ ( 𝐷 ∈ 𝑌 → ( { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ↔ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ) ) ) ) |
| 28 | preq2 | ⊢ ( 𝑤 = 𝐷 → { 𝑧 , 𝑤 } = { 𝑧 , 𝐷 } ) | |
| 29 | 28 | eqeq2d | ⊢ ( 𝑤 = 𝐷 → ( { 𝑥 , 𝑦 } = { 𝑧 , 𝑤 } ↔ { 𝑥 , 𝑦 } = { 𝑧 , 𝐷 } ) ) |
| 30 | eqeq2 | ⊢ ( 𝑤 = 𝐷 → ( 𝑦 = 𝑤 ↔ 𝑦 = 𝐷 ) ) | |
| 31 | 30 | anbi2d | ⊢ ( 𝑤 = 𝐷 → ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ↔ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝐷 ) ) ) |
| 32 | eqeq2 | ⊢ ( 𝑤 = 𝐷 → ( 𝑥 = 𝑤 ↔ 𝑥 = 𝐷 ) ) | |
| 33 | 32 | anbi1d | ⊢ ( 𝑤 = 𝐷 → ( ( 𝑥 = 𝑤 ∧ 𝑦 = 𝑧 ) ↔ ( 𝑥 = 𝐷 ∧ 𝑦 = 𝑧 ) ) ) |
| 34 | 31 33 | orbi12d | ⊢ ( 𝑤 = 𝐷 → ( ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ∨ ( 𝑥 = 𝑤 ∧ 𝑦 = 𝑧 ) ) ↔ ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝐷 ) ∨ ( 𝑥 = 𝐷 ∧ 𝑦 = 𝑧 ) ) ) ) |
| 35 | vex | ⊢ 𝑥 ∈ V | |
| 36 | vex | ⊢ 𝑦 ∈ V | |
| 37 | vex | ⊢ 𝑧 ∈ V | |
| 38 | vex | ⊢ 𝑤 ∈ V | |
| 39 | 35 36 37 38 | preq12b | ⊢ ( { 𝑥 , 𝑦 } = { 𝑧 , 𝑤 } ↔ ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ∨ ( 𝑥 = 𝑤 ∧ 𝑦 = 𝑧 ) ) ) |
| 40 | 29 34 39 | vtoclbg | ⊢ ( 𝐷 ∈ 𝑌 → ( { 𝑥 , 𝑦 } = { 𝑧 , 𝐷 } ↔ ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝐷 ) ∨ ( 𝑥 = 𝐷 ∧ 𝑦 = 𝑧 ) ) ) ) |
| 41 | 40 | a1i | ⊢ ( ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑊 ∧ 𝑧 ∈ 𝑋 ) → ( 𝐷 ∈ 𝑌 → ( { 𝑥 , 𝑦 } = { 𝑧 , 𝐷 } ↔ ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝐷 ) ∨ ( 𝑥 = 𝐷 ∧ 𝑦 = 𝑧 ) ) ) ) ) |
| 42 | 9 18 27 41 | vtocl3ga | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐷 ∈ 𝑌 → ( { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ↔ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ) ) ) |
| 43 | 42 | 3expa | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝐶 ∈ 𝑋 ) → ( 𝐷 ∈ 𝑌 → ( { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ↔ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ) ) ) |
| 44 | 43 | impr | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌 ) ) → ( { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ↔ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ) ) |