This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for uptr . (Contributed by Zhi Wang, 16-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uptrlem1.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
| uptrlem1.i | ⊢ 𝐼 = ( Hom ‘ 𝐷 ) | ||
| uptrlem1.j | ⊢ 𝐽 = ( Hom ‘ 𝐸 ) | ||
| uptrlem1.d | ⊢ ∙ = ( comp ‘ 𝐷 ) | ||
| uptrlem1.e | ⊢ ⚬ = ( comp ‘ 𝐸 ) | ||
| uptrlem1.x | ⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝐷 ) ) | ||
| uptrlem1.y | ⊢ ( 𝜑 → ( 𝑀 ‘ 𝑋 ) = 𝑌 ) | ||
| uptrlem1.z | ⊢ ( 𝜑 → 𝑍 ∈ ( Base ‘ 𝐶 ) ) | ||
| uptrlem1.w | ⊢ ( 𝜑 → 𝑊 ∈ ( Base ‘ 𝐶 ) ) | ||
| uptrlem1.a | ⊢ ( 𝜑 → 𝐴 ∈ ( 𝑋 𝐼 ( 𝐹 ‘ 𝑍 ) ) ) | ||
| uptrlem1.b | ⊢ ( 𝜑 → ( ( 𝑋 𝑁 ( 𝐹 ‘ 𝑍 ) ) ‘ 𝐴 ) = 𝐵 ) | ||
| uptrlem1.f | ⊢ ( 𝜑 → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) | ||
| uptrlem1.m | ⊢ ( 𝜑 → 𝑀 ( ( 𝐷 Full 𝐸 ) ∩ ( 𝐷 Faith 𝐸 ) ) 𝑁 ) | ||
| uptrlem1.k | ⊢ ( 𝜑 → ( 〈 𝑀 , 𝑁 〉 ∘func 〈 𝐹 , 𝐺 〉 ) = 〈 𝐾 , 𝐿 〉 ) | ||
| Assertion | uptrlem1 | ⊢ ( 𝜑 → ( ∀ ℎ ∈ ( 𝑌 𝐽 ( 𝐾 ‘ 𝑊 ) ) ∃! 𝑘 ∈ ( 𝑍 𝐻 𝑊 ) ℎ = ( ( ( 𝑍 𝐿 𝑊 ) ‘ 𝑘 ) ( 〈 𝑌 , ( 𝐾 ‘ 𝑍 ) 〉 ⚬ ( 𝐾 ‘ 𝑊 ) ) 𝐵 ) ↔ ∀ 𝑔 ∈ ( 𝑋 𝐼 ( 𝐹 ‘ 𝑊 ) ) ∃! 𝑘 ∈ ( 𝑍 𝐻 𝑊 ) 𝑔 = ( ( ( 𝑍 𝐺 𝑊 ) ‘ 𝑘 ) ( 〈 𝑋 , ( 𝐹 ‘ 𝑍 ) 〉 ∙ ( 𝐹 ‘ 𝑊 ) ) 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uptrlem1.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
| 2 | uptrlem1.i | ⊢ 𝐼 = ( Hom ‘ 𝐷 ) | |
| 3 | uptrlem1.j | ⊢ 𝐽 = ( Hom ‘ 𝐸 ) | |
| 4 | uptrlem1.d | ⊢ ∙ = ( comp ‘ 𝐷 ) | |
| 5 | uptrlem1.e | ⊢ ⚬ = ( comp ‘ 𝐸 ) | |
| 6 | uptrlem1.x | ⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝐷 ) ) | |
| 7 | uptrlem1.y | ⊢ ( 𝜑 → ( 𝑀 ‘ 𝑋 ) = 𝑌 ) | |
| 8 | uptrlem1.z | ⊢ ( 𝜑 → 𝑍 ∈ ( Base ‘ 𝐶 ) ) | |
| 9 | uptrlem1.w | ⊢ ( 𝜑 → 𝑊 ∈ ( Base ‘ 𝐶 ) ) | |
| 10 | uptrlem1.a | ⊢ ( 𝜑 → 𝐴 ∈ ( 𝑋 𝐼 ( 𝐹 ‘ 𝑍 ) ) ) | |
| 11 | uptrlem1.b | ⊢ ( 𝜑 → ( ( 𝑋 𝑁 ( 𝐹 ‘ 𝑍 ) ) ‘ 𝐴 ) = 𝐵 ) | |
| 12 | uptrlem1.f | ⊢ ( 𝜑 → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) | |
| 13 | uptrlem1.m | ⊢ ( 𝜑 → 𝑀 ( ( 𝐷 Full 𝐸 ) ∩ ( 𝐷 Faith 𝐸 ) ) 𝑁 ) | |
| 14 | uptrlem1.k | ⊢ ( 𝜑 → ( 〈 𝑀 , 𝑁 〉 ∘func 〈 𝐹 , 𝐺 〉 ) = 〈 𝐾 , 𝐿 〉 ) | |
| 15 | eqid | ⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) | |
| 16 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
| 17 | 16 15 12 | funcf1 | ⊢ ( 𝜑 → 𝐹 : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ 𝐷 ) ) |
| 18 | 17 9 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝑊 ) ∈ ( Base ‘ 𝐷 ) ) |
| 19 | 15 2 3 13 6 18 | ffthf1o | ⊢ ( 𝜑 → ( 𝑋 𝑁 ( 𝐹 ‘ 𝑊 ) ) : ( 𝑋 𝐼 ( 𝐹 ‘ 𝑊 ) ) –1-1-onto→ ( ( 𝑀 ‘ 𝑋 ) 𝐽 ( 𝑀 ‘ ( 𝐹 ‘ 𝑊 ) ) ) ) |
| 20 | inss1 | ⊢ ( ( 𝐷 Full 𝐸 ) ∩ ( 𝐷 Faith 𝐸 ) ) ⊆ ( 𝐷 Full 𝐸 ) | |
| 21 | fullfunc | ⊢ ( 𝐷 Full 𝐸 ) ⊆ ( 𝐷 Func 𝐸 ) | |
| 22 | 20 21 | sstri | ⊢ ( ( 𝐷 Full 𝐸 ) ∩ ( 𝐷 Faith 𝐸 ) ) ⊆ ( 𝐷 Func 𝐸 ) |
| 23 | 22 | ssbri | ⊢ ( 𝑀 ( ( 𝐷 Full 𝐸 ) ∩ ( 𝐷 Faith 𝐸 ) ) 𝑁 → 𝑀 ( 𝐷 Func 𝐸 ) 𝑁 ) |
| 24 | 13 23 | syl | ⊢ ( 𝜑 → 𝑀 ( 𝐷 Func 𝐸 ) 𝑁 ) |
| 25 | 16 12 24 14 9 | cofu1a | ⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝐹 ‘ 𝑊 ) ) = ( 𝐾 ‘ 𝑊 ) ) |
| 26 | 7 25 | oveq12d | ⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝑋 ) 𝐽 ( 𝑀 ‘ ( 𝐹 ‘ 𝑊 ) ) ) = ( 𝑌 𝐽 ( 𝐾 ‘ 𝑊 ) ) ) |
| 27 | 26 | f1oeq3d | ⊢ ( 𝜑 → ( ( 𝑋 𝑁 ( 𝐹 ‘ 𝑊 ) ) : ( 𝑋 𝐼 ( 𝐹 ‘ 𝑊 ) ) –1-1-onto→ ( ( 𝑀 ‘ 𝑋 ) 𝐽 ( 𝑀 ‘ ( 𝐹 ‘ 𝑊 ) ) ) ↔ ( 𝑋 𝑁 ( 𝐹 ‘ 𝑊 ) ) : ( 𝑋 𝐼 ( 𝐹 ‘ 𝑊 ) ) –1-1-onto→ ( 𝑌 𝐽 ( 𝐾 ‘ 𝑊 ) ) ) ) |
| 28 | 19 27 | mpbid | ⊢ ( 𝜑 → ( 𝑋 𝑁 ( 𝐹 ‘ 𝑊 ) ) : ( 𝑋 𝐼 ( 𝐹 ‘ 𝑊 ) ) –1-1-onto→ ( 𝑌 𝐽 ( 𝐾 ‘ 𝑊 ) ) ) |
| 29 | f1of | ⊢ ( ( 𝑋 𝑁 ( 𝐹 ‘ 𝑊 ) ) : ( 𝑋 𝐼 ( 𝐹 ‘ 𝑊 ) ) –1-1-onto→ ( 𝑌 𝐽 ( 𝐾 ‘ 𝑊 ) ) → ( 𝑋 𝑁 ( 𝐹 ‘ 𝑊 ) ) : ( 𝑋 𝐼 ( 𝐹 ‘ 𝑊 ) ) ⟶ ( 𝑌 𝐽 ( 𝐾 ‘ 𝑊 ) ) ) | |
| 30 | 28 29 | syl | ⊢ ( 𝜑 → ( 𝑋 𝑁 ( 𝐹 ‘ 𝑊 ) ) : ( 𝑋 𝐼 ( 𝐹 ‘ 𝑊 ) ) ⟶ ( 𝑌 𝐽 ( 𝐾 ‘ 𝑊 ) ) ) |
| 31 | 30 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ ( 𝑋 𝐼 ( 𝐹 ‘ 𝑊 ) ) ) → ( ( 𝑋 𝑁 ( 𝐹 ‘ 𝑊 ) ) ‘ 𝑔 ) ∈ ( 𝑌 𝐽 ( 𝐾 ‘ 𝑊 ) ) ) |
| 32 | f1ofo | ⊢ ( ( 𝑋 𝑁 ( 𝐹 ‘ 𝑊 ) ) : ( 𝑋 𝐼 ( 𝐹 ‘ 𝑊 ) ) –1-1-onto→ ( 𝑌 𝐽 ( 𝐾 ‘ 𝑊 ) ) → ( 𝑋 𝑁 ( 𝐹 ‘ 𝑊 ) ) : ( 𝑋 𝐼 ( 𝐹 ‘ 𝑊 ) ) –onto→ ( 𝑌 𝐽 ( 𝐾 ‘ 𝑊 ) ) ) | |
| 33 | 28 32 | syl | ⊢ ( 𝜑 → ( 𝑋 𝑁 ( 𝐹 ‘ 𝑊 ) ) : ( 𝑋 𝐼 ( 𝐹 ‘ 𝑊 ) ) –onto→ ( 𝑌 𝐽 ( 𝐾 ‘ 𝑊 ) ) ) |
| 34 | foelrn | ⊢ ( ( ( 𝑋 𝑁 ( 𝐹 ‘ 𝑊 ) ) : ( 𝑋 𝐼 ( 𝐹 ‘ 𝑊 ) ) –onto→ ( 𝑌 𝐽 ( 𝐾 ‘ 𝑊 ) ) ∧ ℎ ∈ ( 𝑌 𝐽 ( 𝐾 ‘ 𝑊 ) ) ) → ∃ 𝑔 ∈ ( 𝑋 𝐼 ( 𝐹 ‘ 𝑊 ) ) ℎ = ( ( 𝑋 𝑁 ( 𝐹 ‘ 𝑊 ) ) ‘ 𝑔 ) ) | |
| 35 | 33 34 | sylan | ⊢ ( ( 𝜑 ∧ ℎ ∈ ( 𝑌 𝐽 ( 𝐾 ‘ 𝑊 ) ) ) → ∃ 𝑔 ∈ ( 𝑋 𝐼 ( 𝐹 ‘ 𝑊 ) ) ℎ = ( ( 𝑋 𝑁 ( 𝐹 ‘ 𝑊 ) ) ‘ 𝑔 ) ) |
| 36 | simpl3 | ⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( 𝑋 𝐼 ( 𝐹 ‘ 𝑊 ) ) ∧ ℎ = ( ( 𝑋 𝑁 ( 𝐹 ‘ 𝑊 ) ) ‘ 𝑔 ) ) ∧ 𝑘 ∈ ( 𝑍 𝐻 𝑊 ) ) → ℎ = ( ( 𝑋 𝑁 ( 𝐹 ‘ 𝑊 ) ) ‘ 𝑔 ) ) | |
| 37 | 36 | eqeq1d | ⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( 𝑋 𝐼 ( 𝐹 ‘ 𝑊 ) ) ∧ ℎ = ( ( 𝑋 𝑁 ( 𝐹 ‘ 𝑊 ) ) ‘ 𝑔 ) ) ∧ 𝑘 ∈ ( 𝑍 𝐻 𝑊 ) ) → ( ℎ = ( ( ( 𝑍 𝐿 𝑊 ) ‘ 𝑘 ) ( 〈 𝑌 , ( 𝐾 ‘ 𝑍 ) 〉 ⚬ ( 𝐾 ‘ 𝑊 ) ) 𝐵 ) ↔ ( ( 𝑋 𝑁 ( 𝐹 ‘ 𝑊 ) ) ‘ 𝑔 ) = ( ( ( 𝑍 𝐿 𝑊 ) ‘ 𝑘 ) ( 〈 𝑌 , ( 𝐾 ‘ 𝑍 ) 〉 ⚬ ( 𝐾 ‘ 𝑊 ) ) 𝐵 ) ) ) |
| 38 | 24 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( 𝑋 𝐼 ( 𝐹 ‘ 𝑊 ) ) ) ∧ 𝑘 ∈ ( 𝑍 𝐻 𝑊 ) ) → 𝑀 ( 𝐷 Func 𝐸 ) 𝑁 ) |
| 39 | 6 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( 𝑋 𝐼 ( 𝐹 ‘ 𝑊 ) ) ) ∧ 𝑘 ∈ ( 𝑍 𝐻 𝑊 ) ) → 𝑋 ∈ ( Base ‘ 𝐷 ) ) |
| 40 | 17 8 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝑍 ) ∈ ( Base ‘ 𝐷 ) ) |
| 41 | 40 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( 𝑋 𝐼 ( 𝐹 ‘ 𝑊 ) ) ) ∧ 𝑘 ∈ ( 𝑍 𝐻 𝑊 ) ) → ( 𝐹 ‘ 𝑍 ) ∈ ( Base ‘ 𝐷 ) ) |
| 42 | 18 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( 𝑋 𝐼 ( 𝐹 ‘ 𝑊 ) ) ) ∧ 𝑘 ∈ ( 𝑍 𝐻 𝑊 ) ) → ( 𝐹 ‘ 𝑊 ) ∈ ( Base ‘ 𝐷 ) ) |
| 43 | 10 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( 𝑋 𝐼 ( 𝐹 ‘ 𝑊 ) ) ) ∧ 𝑘 ∈ ( 𝑍 𝐻 𝑊 ) ) → 𝐴 ∈ ( 𝑋 𝐼 ( 𝐹 ‘ 𝑍 ) ) ) |
| 44 | 16 1 2 12 8 9 | funcf2 | ⊢ ( 𝜑 → ( 𝑍 𝐺 𝑊 ) : ( 𝑍 𝐻 𝑊 ) ⟶ ( ( 𝐹 ‘ 𝑍 ) 𝐼 ( 𝐹 ‘ 𝑊 ) ) ) |
| 45 | 44 | adantr | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ ( 𝑋 𝐼 ( 𝐹 ‘ 𝑊 ) ) ) → ( 𝑍 𝐺 𝑊 ) : ( 𝑍 𝐻 𝑊 ) ⟶ ( ( 𝐹 ‘ 𝑍 ) 𝐼 ( 𝐹 ‘ 𝑊 ) ) ) |
| 46 | 45 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( 𝑋 𝐼 ( 𝐹 ‘ 𝑊 ) ) ) ∧ 𝑘 ∈ ( 𝑍 𝐻 𝑊 ) ) → ( ( 𝑍 𝐺 𝑊 ) ‘ 𝑘 ) ∈ ( ( 𝐹 ‘ 𝑍 ) 𝐼 ( 𝐹 ‘ 𝑊 ) ) ) |
| 47 | 15 2 4 5 38 39 41 42 43 46 | funcco | ⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( 𝑋 𝐼 ( 𝐹 ‘ 𝑊 ) ) ) ∧ 𝑘 ∈ ( 𝑍 𝐻 𝑊 ) ) → ( ( 𝑋 𝑁 ( 𝐹 ‘ 𝑊 ) ) ‘ ( ( ( 𝑍 𝐺 𝑊 ) ‘ 𝑘 ) ( 〈 𝑋 , ( 𝐹 ‘ 𝑍 ) 〉 ∙ ( 𝐹 ‘ 𝑊 ) ) 𝐴 ) ) = ( ( ( ( 𝐹 ‘ 𝑍 ) 𝑁 ( 𝐹 ‘ 𝑊 ) ) ‘ ( ( 𝑍 𝐺 𝑊 ) ‘ 𝑘 ) ) ( 〈 ( 𝑀 ‘ 𝑋 ) , ( 𝑀 ‘ ( 𝐹 ‘ 𝑍 ) ) 〉 ⚬ ( 𝑀 ‘ ( 𝐹 ‘ 𝑊 ) ) ) ( ( 𝑋 𝑁 ( 𝐹 ‘ 𝑍 ) ) ‘ 𝐴 ) ) ) |
| 48 | 7 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( 𝑋 𝐼 ( 𝐹 ‘ 𝑊 ) ) ) ∧ 𝑘 ∈ ( 𝑍 𝐻 𝑊 ) ) → ( 𝑀 ‘ 𝑋 ) = 𝑌 ) |
| 49 | 16 12 24 14 8 | cofu1a | ⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝐹 ‘ 𝑍 ) ) = ( 𝐾 ‘ 𝑍 ) ) |
| 50 | 49 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( 𝑋 𝐼 ( 𝐹 ‘ 𝑊 ) ) ) ∧ 𝑘 ∈ ( 𝑍 𝐻 𝑊 ) ) → ( 𝑀 ‘ ( 𝐹 ‘ 𝑍 ) ) = ( 𝐾 ‘ 𝑍 ) ) |
| 51 | 48 50 | opeq12d | ⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( 𝑋 𝐼 ( 𝐹 ‘ 𝑊 ) ) ) ∧ 𝑘 ∈ ( 𝑍 𝐻 𝑊 ) ) → 〈 ( 𝑀 ‘ 𝑋 ) , ( 𝑀 ‘ ( 𝐹 ‘ 𝑍 ) ) 〉 = 〈 𝑌 , ( 𝐾 ‘ 𝑍 ) 〉 ) |
| 52 | 25 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( 𝑋 𝐼 ( 𝐹 ‘ 𝑊 ) ) ) ∧ 𝑘 ∈ ( 𝑍 𝐻 𝑊 ) ) → ( 𝑀 ‘ ( 𝐹 ‘ 𝑊 ) ) = ( 𝐾 ‘ 𝑊 ) ) |
| 53 | 51 52 | oveq12d | ⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( 𝑋 𝐼 ( 𝐹 ‘ 𝑊 ) ) ) ∧ 𝑘 ∈ ( 𝑍 𝐻 𝑊 ) ) → ( 〈 ( 𝑀 ‘ 𝑋 ) , ( 𝑀 ‘ ( 𝐹 ‘ 𝑍 ) ) 〉 ⚬ ( 𝑀 ‘ ( 𝐹 ‘ 𝑊 ) ) ) = ( 〈 𝑌 , ( 𝐾 ‘ 𝑍 ) 〉 ⚬ ( 𝐾 ‘ 𝑊 ) ) ) |
| 54 | 12 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( 𝑋 𝐼 ( 𝐹 ‘ 𝑊 ) ) ) ∧ 𝑘 ∈ ( 𝑍 𝐻 𝑊 ) ) → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) |
| 55 | 14 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( 𝑋 𝐼 ( 𝐹 ‘ 𝑊 ) ) ) ∧ 𝑘 ∈ ( 𝑍 𝐻 𝑊 ) ) → ( 〈 𝑀 , 𝑁 〉 ∘func 〈 𝐹 , 𝐺 〉 ) = 〈 𝐾 , 𝐿 〉 ) |
| 56 | 8 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( 𝑋 𝐼 ( 𝐹 ‘ 𝑊 ) ) ) ∧ 𝑘 ∈ ( 𝑍 𝐻 𝑊 ) ) → 𝑍 ∈ ( Base ‘ 𝐶 ) ) |
| 57 | 9 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( 𝑋 𝐼 ( 𝐹 ‘ 𝑊 ) ) ) ∧ 𝑘 ∈ ( 𝑍 𝐻 𝑊 ) ) → 𝑊 ∈ ( Base ‘ 𝐶 ) ) |
| 58 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( 𝑋 𝐼 ( 𝐹 ‘ 𝑊 ) ) ) ∧ 𝑘 ∈ ( 𝑍 𝐻 𝑊 ) ) → 𝑘 ∈ ( 𝑍 𝐻 𝑊 ) ) | |
| 59 | 16 54 38 55 56 57 1 58 | cofu2a | ⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( 𝑋 𝐼 ( 𝐹 ‘ 𝑊 ) ) ) ∧ 𝑘 ∈ ( 𝑍 𝐻 𝑊 ) ) → ( ( ( 𝐹 ‘ 𝑍 ) 𝑁 ( 𝐹 ‘ 𝑊 ) ) ‘ ( ( 𝑍 𝐺 𝑊 ) ‘ 𝑘 ) ) = ( ( 𝑍 𝐿 𝑊 ) ‘ 𝑘 ) ) |
| 60 | 11 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( 𝑋 𝐼 ( 𝐹 ‘ 𝑊 ) ) ) ∧ 𝑘 ∈ ( 𝑍 𝐻 𝑊 ) ) → ( ( 𝑋 𝑁 ( 𝐹 ‘ 𝑍 ) ) ‘ 𝐴 ) = 𝐵 ) |
| 61 | 53 59 60 | oveq123d | ⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( 𝑋 𝐼 ( 𝐹 ‘ 𝑊 ) ) ) ∧ 𝑘 ∈ ( 𝑍 𝐻 𝑊 ) ) → ( ( ( ( 𝐹 ‘ 𝑍 ) 𝑁 ( 𝐹 ‘ 𝑊 ) ) ‘ ( ( 𝑍 𝐺 𝑊 ) ‘ 𝑘 ) ) ( 〈 ( 𝑀 ‘ 𝑋 ) , ( 𝑀 ‘ ( 𝐹 ‘ 𝑍 ) ) 〉 ⚬ ( 𝑀 ‘ ( 𝐹 ‘ 𝑊 ) ) ) ( ( 𝑋 𝑁 ( 𝐹 ‘ 𝑍 ) ) ‘ 𝐴 ) ) = ( ( ( 𝑍 𝐿 𝑊 ) ‘ 𝑘 ) ( 〈 𝑌 , ( 𝐾 ‘ 𝑍 ) 〉 ⚬ ( 𝐾 ‘ 𝑊 ) ) 𝐵 ) ) |
| 62 | 47 61 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( 𝑋 𝐼 ( 𝐹 ‘ 𝑊 ) ) ) ∧ 𝑘 ∈ ( 𝑍 𝐻 𝑊 ) ) → ( ( 𝑋 𝑁 ( 𝐹 ‘ 𝑊 ) ) ‘ ( ( ( 𝑍 𝐺 𝑊 ) ‘ 𝑘 ) ( 〈 𝑋 , ( 𝐹 ‘ 𝑍 ) 〉 ∙ ( 𝐹 ‘ 𝑊 ) ) 𝐴 ) ) = ( ( ( 𝑍 𝐿 𝑊 ) ‘ 𝑘 ) ( 〈 𝑌 , ( 𝐾 ‘ 𝑍 ) 〉 ⚬ ( 𝐾 ‘ 𝑊 ) ) 𝐵 ) ) |
| 63 | 62 | eqeq2d | ⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( 𝑋 𝐼 ( 𝐹 ‘ 𝑊 ) ) ) ∧ 𝑘 ∈ ( 𝑍 𝐻 𝑊 ) ) → ( ( ( 𝑋 𝑁 ( 𝐹 ‘ 𝑊 ) ) ‘ 𝑔 ) = ( ( 𝑋 𝑁 ( 𝐹 ‘ 𝑊 ) ) ‘ ( ( ( 𝑍 𝐺 𝑊 ) ‘ 𝑘 ) ( 〈 𝑋 , ( 𝐹 ‘ 𝑍 ) 〉 ∙ ( 𝐹 ‘ 𝑊 ) ) 𝐴 ) ) ↔ ( ( 𝑋 𝑁 ( 𝐹 ‘ 𝑊 ) ) ‘ 𝑔 ) = ( ( ( 𝑍 𝐿 𝑊 ) ‘ 𝑘 ) ( 〈 𝑌 , ( 𝐾 ‘ 𝑍 ) 〉 ⚬ ( 𝐾 ‘ 𝑊 ) ) 𝐵 ) ) ) |
| 64 | f1of1 | ⊢ ( ( 𝑋 𝑁 ( 𝐹 ‘ 𝑊 ) ) : ( 𝑋 𝐼 ( 𝐹 ‘ 𝑊 ) ) –1-1-onto→ ( 𝑌 𝐽 ( 𝐾 ‘ 𝑊 ) ) → ( 𝑋 𝑁 ( 𝐹 ‘ 𝑊 ) ) : ( 𝑋 𝐼 ( 𝐹 ‘ 𝑊 ) ) –1-1→ ( 𝑌 𝐽 ( 𝐾 ‘ 𝑊 ) ) ) | |
| 65 | 28 64 | syl | ⊢ ( 𝜑 → ( 𝑋 𝑁 ( 𝐹 ‘ 𝑊 ) ) : ( 𝑋 𝐼 ( 𝐹 ‘ 𝑊 ) ) –1-1→ ( 𝑌 𝐽 ( 𝐾 ‘ 𝑊 ) ) ) |
| 66 | 65 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( 𝑋 𝐼 ( 𝐹 ‘ 𝑊 ) ) ) ∧ 𝑘 ∈ ( 𝑍 𝐻 𝑊 ) ) → ( 𝑋 𝑁 ( 𝐹 ‘ 𝑊 ) ) : ( 𝑋 𝐼 ( 𝐹 ‘ 𝑊 ) ) –1-1→ ( 𝑌 𝐽 ( 𝐾 ‘ 𝑊 ) ) ) |
| 67 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( 𝑋 𝐼 ( 𝐹 ‘ 𝑊 ) ) ) ∧ 𝑘 ∈ ( 𝑍 𝐻 𝑊 ) ) → 𝑔 ∈ ( 𝑋 𝐼 ( 𝐹 ‘ 𝑊 ) ) ) | |
| 68 | 38 | funcrcl2 | ⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( 𝑋 𝐼 ( 𝐹 ‘ 𝑊 ) ) ) ∧ 𝑘 ∈ ( 𝑍 𝐻 𝑊 ) ) → 𝐷 ∈ Cat ) |
| 69 | 15 2 4 68 39 41 42 43 46 | catcocl | ⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( 𝑋 𝐼 ( 𝐹 ‘ 𝑊 ) ) ) ∧ 𝑘 ∈ ( 𝑍 𝐻 𝑊 ) ) → ( ( ( 𝑍 𝐺 𝑊 ) ‘ 𝑘 ) ( 〈 𝑋 , ( 𝐹 ‘ 𝑍 ) 〉 ∙ ( 𝐹 ‘ 𝑊 ) ) 𝐴 ) ∈ ( 𝑋 𝐼 ( 𝐹 ‘ 𝑊 ) ) ) |
| 70 | f1fveq | ⊢ ( ( ( 𝑋 𝑁 ( 𝐹 ‘ 𝑊 ) ) : ( 𝑋 𝐼 ( 𝐹 ‘ 𝑊 ) ) –1-1→ ( 𝑌 𝐽 ( 𝐾 ‘ 𝑊 ) ) ∧ ( 𝑔 ∈ ( 𝑋 𝐼 ( 𝐹 ‘ 𝑊 ) ) ∧ ( ( ( 𝑍 𝐺 𝑊 ) ‘ 𝑘 ) ( 〈 𝑋 , ( 𝐹 ‘ 𝑍 ) 〉 ∙ ( 𝐹 ‘ 𝑊 ) ) 𝐴 ) ∈ ( 𝑋 𝐼 ( 𝐹 ‘ 𝑊 ) ) ) ) → ( ( ( 𝑋 𝑁 ( 𝐹 ‘ 𝑊 ) ) ‘ 𝑔 ) = ( ( 𝑋 𝑁 ( 𝐹 ‘ 𝑊 ) ) ‘ ( ( ( 𝑍 𝐺 𝑊 ) ‘ 𝑘 ) ( 〈 𝑋 , ( 𝐹 ‘ 𝑍 ) 〉 ∙ ( 𝐹 ‘ 𝑊 ) ) 𝐴 ) ) ↔ 𝑔 = ( ( ( 𝑍 𝐺 𝑊 ) ‘ 𝑘 ) ( 〈 𝑋 , ( 𝐹 ‘ 𝑍 ) 〉 ∙ ( 𝐹 ‘ 𝑊 ) ) 𝐴 ) ) ) | |
| 71 | 66 67 69 70 | syl12anc | ⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( 𝑋 𝐼 ( 𝐹 ‘ 𝑊 ) ) ) ∧ 𝑘 ∈ ( 𝑍 𝐻 𝑊 ) ) → ( ( ( 𝑋 𝑁 ( 𝐹 ‘ 𝑊 ) ) ‘ 𝑔 ) = ( ( 𝑋 𝑁 ( 𝐹 ‘ 𝑊 ) ) ‘ ( ( ( 𝑍 𝐺 𝑊 ) ‘ 𝑘 ) ( 〈 𝑋 , ( 𝐹 ‘ 𝑍 ) 〉 ∙ ( 𝐹 ‘ 𝑊 ) ) 𝐴 ) ) ↔ 𝑔 = ( ( ( 𝑍 𝐺 𝑊 ) ‘ 𝑘 ) ( 〈 𝑋 , ( 𝐹 ‘ 𝑍 ) 〉 ∙ ( 𝐹 ‘ 𝑊 ) ) 𝐴 ) ) ) |
| 72 | 63 71 | bitr3d | ⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( 𝑋 𝐼 ( 𝐹 ‘ 𝑊 ) ) ) ∧ 𝑘 ∈ ( 𝑍 𝐻 𝑊 ) ) → ( ( ( 𝑋 𝑁 ( 𝐹 ‘ 𝑊 ) ) ‘ 𝑔 ) = ( ( ( 𝑍 𝐿 𝑊 ) ‘ 𝑘 ) ( 〈 𝑌 , ( 𝐾 ‘ 𝑍 ) 〉 ⚬ ( 𝐾 ‘ 𝑊 ) ) 𝐵 ) ↔ 𝑔 = ( ( ( 𝑍 𝐺 𝑊 ) ‘ 𝑘 ) ( 〈 𝑋 , ( 𝐹 ‘ 𝑍 ) 〉 ∙ ( 𝐹 ‘ 𝑊 ) ) 𝐴 ) ) ) |
| 73 | 72 | 3adantl3 | ⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( 𝑋 𝐼 ( 𝐹 ‘ 𝑊 ) ) ∧ ℎ = ( ( 𝑋 𝑁 ( 𝐹 ‘ 𝑊 ) ) ‘ 𝑔 ) ) ∧ 𝑘 ∈ ( 𝑍 𝐻 𝑊 ) ) → ( ( ( 𝑋 𝑁 ( 𝐹 ‘ 𝑊 ) ) ‘ 𝑔 ) = ( ( ( 𝑍 𝐿 𝑊 ) ‘ 𝑘 ) ( 〈 𝑌 , ( 𝐾 ‘ 𝑍 ) 〉 ⚬ ( 𝐾 ‘ 𝑊 ) ) 𝐵 ) ↔ 𝑔 = ( ( ( 𝑍 𝐺 𝑊 ) ‘ 𝑘 ) ( 〈 𝑋 , ( 𝐹 ‘ 𝑍 ) 〉 ∙ ( 𝐹 ‘ 𝑊 ) ) 𝐴 ) ) ) |
| 74 | 37 73 | bitrd | ⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( 𝑋 𝐼 ( 𝐹 ‘ 𝑊 ) ) ∧ ℎ = ( ( 𝑋 𝑁 ( 𝐹 ‘ 𝑊 ) ) ‘ 𝑔 ) ) ∧ 𝑘 ∈ ( 𝑍 𝐻 𝑊 ) ) → ( ℎ = ( ( ( 𝑍 𝐿 𝑊 ) ‘ 𝑘 ) ( 〈 𝑌 , ( 𝐾 ‘ 𝑍 ) 〉 ⚬ ( 𝐾 ‘ 𝑊 ) ) 𝐵 ) ↔ 𝑔 = ( ( ( 𝑍 𝐺 𝑊 ) ‘ 𝑘 ) ( 〈 𝑋 , ( 𝐹 ‘ 𝑍 ) 〉 ∙ ( 𝐹 ‘ 𝑊 ) ) 𝐴 ) ) ) |
| 75 | 74 | reubidva | ⊢ ( ( 𝜑 ∧ 𝑔 ∈ ( 𝑋 𝐼 ( 𝐹 ‘ 𝑊 ) ) ∧ ℎ = ( ( 𝑋 𝑁 ( 𝐹 ‘ 𝑊 ) ) ‘ 𝑔 ) ) → ( ∃! 𝑘 ∈ ( 𝑍 𝐻 𝑊 ) ℎ = ( ( ( 𝑍 𝐿 𝑊 ) ‘ 𝑘 ) ( 〈 𝑌 , ( 𝐾 ‘ 𝑍 ) 〉 ⚬ ( 𝐾 ‘ 𝑊 ) ) 𝐵 ) ↔ ∃! 𝑘 ∈ ( 𝑍 𝐻 𝑊 ) 𝑔 = ( ( ( 𝑍 𝐺 𝑊 ) ‘ 𝑘 ) ( 〈 𝑋 , ( 𝐹 ‘ 𝑍 ) 〉 ∙ ( 𝐹 ‘ 𝑊 ) ) 𝐴 ) ) ) |
| 76 | 31 35 75 | ralxfrd2 | ⊢ ( 𝜑 → ( ∀ ℎ ∈ ( 𝑌 𝐽 ( 𝐾 ‘ 𝑊 ) ) ∃! 𝑘 ∈ ( 𝑍 𝐻 𝑊 ) ℎ = ( ( ( 𝑍 𝐿 𝑊 ) ‘ 𝑘 ) ( 〈 𝑌 , ( 𝐾 ‘ 𝑍 ) 〉 ⚬ ( 𝐾 ‘ 𝑊 ) ) 𝐵 ) ↔ ∀ 𝑔 ∈ ( 𝑋 𝐼 ( 𝐹 ‘ 𝑊 ) ) ∃! 𝑘 ∈ ( 𝑍 𝐻 𝑊 ) 𝑔 = ( ( ( 𝑍 𝐺 𝑊 ) ‘ 𝑘 ) ( 〈 𝑋 , ( 𝐹 ‘ 𝑍 ) 〉 ∙ ( 𝐹 ‘ 𝑊 ) ) 𝐴 ) ) ) |