This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Universal property and fully faithful functor. (Contributed by Zhi Wang, 16-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uptr.y | ⊢ ( 𝜑 → ( 𝑅 ‘ 𝑋 ) = 𝑌 ) | |
| uptr.r | ⊢ ( 𝜑 → 𝑅 ( ( 𝐷 Full 𝐸 ) ∩ ( 𝐷 Faith 𝐸 ) ) 𝑆 ) | ||
| uptr.k | ⊢ ( 𝜑 → ( 〈 𝑅 , 𝑆 〉 ∘func 〈 𝐹 , 𝐺 〉 ) = 〈 𝐾 , 𝐿 〉 ) | ||
| uptr.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | ||
| uptr.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| uptr.f | ⊢ ( 𝜑 → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) | ||
| uptr.n | ⊢ ( 𝜑 → ( ( 𝑋 𝑆 ( 𝐹 ‘ 𝑍 ) ) ‘ 𝑀 ) = 𝑁 ) | ||
| uptr.j | ⊢ 𝐽 = ( Hom ‘ 𝐷 ) | ||
| uptr.m | ⊢ ( 𝜑 → 𝑀 ∈ ( 𝑋 𝐽 ( 𝐹 ‘ 𝑍 ) ) ) | ||
| Assertion | uptr | ⊢ ( 𝜑 → ( 𝑍 ( 〈 𝐹 , 𝐺 〉 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑀 ↔ 𝑍 ( 〈 𝐾 , 𝐿 〉 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uptr.y | ⊢ ( 𝜑 → ( 𝑅 ‘ 𝑋 ) = 𝑌 ) | |
| 2 | uptr.r | ⊢ ( 𝜑 → 𝑅 ( ( 𝐷 Full 𝐸 ) ∩ ( 𝐷 Faith 𝐸 ) ) 𝑆 ) | |
| 3 | uptr.k | ⊢ ( 𝜑 → ( 〈 𝑅 , 𝑆 〉 ∘func 〈 𝐹 , 𝐺 〉 ) = 〈 𝐾 , 𝐿 〉 ) | |
| 4 | uptr.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | |
| 5 | uptr.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 6 | uptr.f | ⊢ ( 𝜑 → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) | |
| 7 | uptr.n | ⊢ ( 𝜑 → ( ( 𝑋 𝑆 ( 𝐹 ‘ 𝑍 ) ) ‘ 𝑀 ) = 𝑁 ) | |
| 8 | uptr.j | ⊢ 𝐽 = ( Hom ‘ 𝐷 ) | |
| 9 | uptr.m | ⊢ ( 𝜑 → 𝑀 ∈ ( 𝑋 𝐽 ( 𝐹 ‘ 𝑍 ) ) ) | |
| 10 | simpr | ⊢ ( ( 𝜑 ∧ 𝑍 ( 〈 𝐹 , 𝐺 〉 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑀 ) → 𝑍 ( 〈 𝐹 , 𝐺 〉 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑀 ) | |
| 11 | simpr | ⊢ ( ( 𝜑 ∧ 𝑍 ( 〈 𝐾 , 𝐿 〉 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑁 ) → 𝑍 ( 〈 𝐾 , 𝐿 〉 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑁 ) | |
| 12 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝑍 ( 〈 𝐾 , 𝐿 〉 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑁 ) → ( 𝑅 ‘ 𝑋 ) = 𝑌 ) |
| 13 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑍 ( 〈 𝐾 , 𝐿 〉 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑁 ) → 𝑅 ( ( 𝐷 Full 𝐸 ) ∩ ( 𝐷 Faith 𝐸 ) ) 𝑆 ) |
| 14 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑍 ( 〈 𝐾 , 𝐿 〉 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑁 ) → ( 〈 𝑅 , 𝑆 〉 ∘func 〈 𝐹 , 𝐺 〉 ) = 〈 𝐾 , 𝐿 〉 ) |
| 15 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑍 ( 〈 𝐾 , 𝐿 〉 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑁 ) → 𝑋 ∈ 𝐵 ) |
| 16 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑍 ( 〈 𝐾 , 𝐿 〉 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑁 ) → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) |
| 17 | 7 | adantr | ⊢ ( ( 𝜑 ∧ 𝑍 ( 〈 𝐾 , 𝐿 〉 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑁 ) → ( ( 𝑋 𝑆 ( 𝐹 ‘ 𝑍 ) ) ‘ 𝑀 ) = 𝑁 ) |
| 18 | 9 | adantr | ⊢ ( ( 𝜑 ∧ 𝑍 ( 〈 𝐾 , 𝐿 〉 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑁 ) → 𝑀 ∈ ( 𝑋 𝐽 ( 𝐹 ‘ 𝑍 ) ) ) |
| 19 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
| 20 | 11 19 | uprcl4 | ⊢ ( ( 𝜑 ∧ 𝑍 ( 〈 𝐾 , 𝐿 〉 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑁 ) → 𝑍 ∈ ( Base ‘ 𝐶 ) ) |
| 21 | 12 13 14 4 15 16 17 8 18 19 20 | uptrlem3 | ⊢ ( ( 𝜑 ∧ 𝑍 ( 〈 𝐾 , 𝐿 〉 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑁 ) → ( 𝑍 ( 〈 𝐹 , 𝐺 〉 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑀 ↔ 𝑍 ( 〈 𝐾 , 𝐿 〉 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑁 ) ) |
| 22 | 11 21 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑍 ( 〈 𝐾 , 𝐿 〉 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑁 ) → 𝑍 ( 〈 𝐹 , 𝐺 〉 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑀 ) |
| 23 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝑍 ( 〈 𝐹 , 𝐺 〉 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑀 ) → ( 𝑅 ‘ 𝑋 ) = 𝑌 ) |
| 24 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑍 ( 〈 𝐹 , 𝐺 〉 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑀 ) → 𝑅 ( ( 𝐷 Full 𝐸 ) ∩ ( 𝐷 Faith 𝐸 ) ) 𝑆 ) |
| 25 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑍 ( 〈 𝐹 , 𝐺 〉 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑀 ) → ( 〈 𝑅 , 𝑆 〉 ∘func 〈 𝐹 , 𝐺 〉 ) = 〈 𝐾 , 𝐿 〉 ) |
| 26 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑍 ( 〈 𝐹 , 𝐺 〉 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑀 ) → 𝑋 ∈ 𝐵 ) |
| 27 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑍 ( 〈 𝐹 , 𝐺 〉 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑀 ) → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) |
| 28 | 7 | adantr | ⊢ ( ( 𝜑 ∧ 𝑍 ( 〈 𝐹 , 𝐺 〉 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑀 ) → ( ( 𝑋 𝑆 ( 𝐹 ‘ 𝑍 ) ) ‘ 𝑀 ) = 𝑁 ) |
| 29 | 9 | adantr | ⊢ ( ( 𝜑 ∧ 𝑍 ( 〈 𝐹 , 𝐺 〉 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑀 ) → 𝑀 ∈ ( 𝑋 𝐽 ( 𝐹 ‘ 𝑍 ) ) ) |
| 30 | 10 19 | uprcl4 | ⊢ ( ( 𝜑 ∧ 𝑍 ( 〈 𝐹 , 𝐺 〉 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑀 ) → 𝑍 ∈ ( Base ‘ 𝐶 ) ) |
| 31 | 23 24 25 4 26 27 28 8 29 19 30 | uptrlem3 | ⊢ ( ( 𝜑 ∧ 𝑍 ( 〈 𝐹 , 𝐺 〉 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑀 ) → ( 𝑍 ( 〈 𝐹 , 𝐺 〉 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑀 ↔ 𝑍 ( 〈 𝐾 , 𝐿 〉 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑁 ) ) |
| 32 | 10 22 31 | bibiad | ⊢ ( 𝜑 → ( 𝑍 ( 〈 𝐹 , 𝐺 〉 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑀 ↔ 𝑍 ( 〈 𝐾 , 𝐿 〉 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑁 ) ) |