This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for uptr . (Contributed by Zhi Wang, 16-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uptrlem1.h | ||
| uptrlem1.i | |||
| uptrlem1.j | |||
| uptrlem1.d | |||
| uptrlem1.e | No typesetting found for |- .o. = ( comp ` E ) with typecode |- | ||
| uptrlem1.x | |||
| uptrlem1.y | |||
| uptrlem1.z | |||
| uptrlem1.w | |||
| uptrlem1.a | |||
| uptrlem1.b | |||
| uptrlem1.f | |||
| uptrlem1.m | |||
| uptrlem1.k | |||
| Assertion | uptrlem1 | Could not format assertion : No typesetting found for |- ( ph -> ( A. h e. ( Y J ( K ` W ) ) E! k e. ( Z H W ) h = ( ( ( Z L W ) ` k ) ( <. Y , ( K ` Z ) >. .o. ( K ` W ) ) B ) <-> A. g e. ( X I ( F ` W ) ) E! k e. ( Z H W ) g = ( ( ( Z G W ) ` k ) ( <. X , ( F ` Z ) >. .xb ( F ` W ) ) A ) ) ) with typecode |- |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uptrlem1.h | ||
| 2 | uptrlem1.i | ||
| 3 | uptrlem1.j | ||
| 4 | uptrlem1.d | ||
| 5 | uptrlem1.e | Could not format .o. = ( comp ` E ) : No typesetting found for |- .o. = ( comp ` E ) with typecode |- | |
| 6 | uptrlem1.x | ||
| 7 | uptrlem1.y | ||
| 8 | uptrlem1.z | ||
| 9 | uptrlem1.w | ||
| 10 | uptrlem1.a | ||
| 11 | uptrlem1.b | ||
| 12 | uptrlem1.f | ||
| 13 | uptrlem1.m | ||
| 14 | uptrlem1.k | ||
| 15 | eqid | ||
| 16 | eqid | ||
| 17 | 16 15 12 | funcf1 | |
| 18 | 17 9 | ffvelcdmd | |
| 19 | 15 2 3 13 6 18 | ffthf1o | |
| 20 | inss1 | ||
| 21 | fullfunc | ||
| 22 | 20 21 | sstri | |
| 23 | 22 | ssbri | |
| 24 | 13 23 | syl | |
| 25 | 16 12 24 14 9 | cofu1a | |
| 26 | 7 25 | oveq12d | |
| 27 | 26 | f1oeq3d | |
| 28 | 19 27 | mpbid | |
| 29 | f1of | ||
| 30 | 28 29 | syl | |
| 31 | 30 | ffvelcdmda | |
| 32 | f1ofo | ||
| 33 | 28 32 | syl | |
| 34 | foelrn | ||
| 35 | 33 34 | sylan | |
| 36 | simpl3 | ||
| 37 | 36 | eqeq1d | Could not format ( ( ( ph /\ g e. ( X I ( F ` W ) ) /\ h = ( ( X N ( F ` W ) ) ` g ) ) /\ k e. ( Z H W ) ) -> ( h = ( ( ( Z L W ) ` k ) ( <. Y , ( K ` Z ) >. .o. ( K ` W ) ) B ) <-> ( ( X N ( F ` W ) ) ` g ) = ( ( ( Z L W ) ` k ) ( <. Y , ( K ` Z ) >. .o. ( K ` W ) ) B ) ) ) : No typesetting found for |- ( ( ( ph /\ g e. ( X I ( F ` W ) ) /\ h = ( ( X N ( F ` W ) ) ` g ) ) /\ k e. ( Z H W ) ) -> ( h = ( ( ( Z L W ) ` k ) ( <. Y , ( K ` Z ) >. .o. ( K ` W ) ) B ) <-> ( ( X N ( F ` W ) ) ` g ) = ( ( ( Z L W ) ` k ) ( <. Y , ( K ` Z ) >. .o. ( K ` W ) ) B ) ) ) with typecode |- |
| 38 | 24 | ad2antrr | |
| 39 | 6 | ad2antrr | |
| 40 | 17 8 | ffvelcdmd | |
| 41 | 40 | ad2antrr | |
| 42 | 18 | ad2antrr | |
| 43 | 10 | ad2antrr | |
| 44 | 16 1 2 12 8 9 | funcf2 | |
| 45 | 44 | adantr | |
| 46 | 45 | ffvelcdmda | |
| 47 | 15 2 4 5 38 39 41 42 43 46 | funcco | Could not format ( ( ( ph /\ g e. ( X I ( F ` W ) ) ) /\ k e. ( Z H W ) ) -> ( ( X N ( F ` W ) ) ` ( ( ( Z G W ) ` k ) ( <. X , ( F ` Z ) >. .xb ( F ` W ) ) A ) ) = ( ( ( ( F ` Z ) N ( F ` W ) ) ` ( ( Z G W ) ` k ) ) ( <. ( M ` X ) , ( M ` ( F ` Z ) ) >. .o. ( M ` ( F ` W ) ) ) ( ( X N ( F ` Z ) ) ` A ) ) ) : No typesetting found for |- ( ( ( ph /\ g e. ( X I ( F ` W ) ) ) /\ k e. ( Z H W ) ) -> ( ( X N ( F ` W ) ) ` ( ( ( Z G W ) ` k ) ( <. X , ( F ` Z ) >. .xb ( F ` W ) ) A ) ) = ( ( ( ( F ` Z ) N ( F ` W ) ) ` ( ( Z G W ) ` k ) ) ( <. ( M ` X ) , ( M ` ( F ` Z ) ) >. .o. ( M ` ( F ` W ) ) ) ( ( X N ( F ` Z ) ) ` A ) ) ) with typecode |- |
| 48 | 7 | ad2antrr | |
| 49 | 16 12 24 14 8 | cofu1a | |
| 50 | 49 | ad2antrr | |
| 51 | 48 50 | opeq12d | |
| 52 | 25 | ad2antrr | |
| 53 | 51 52 | oveq12d | Could not format ( ( ( ph /\ g e. ( X I ( F ` W ) ) ) /\ k e. ( Z H W ) ) -> ( <. ( M ` X ) , ( M ` ( F ` Z ) ) >. .o. ( M ` ( F ` W ) ) ) = ( <. Y , ( K ` Z ) >. .o. ( K ` W ) ) ) : No typesetting found for |- ( ( ( ph /\ g e. ( X I ( F ` W ) ) ) /\ k e. ( Z H W ) ) -> ( <. ( M ` X ) , ( M ` ( F ` Z ) ) >. .o. ( M ` ( F ` W ) ) ) = ( <. Y , ( K ` Z ) >. .o. ( K ` W ) ) ) with typecode |- |
| 54 | 12 | ad2antrr | |
| 55 | 14 | ad2antrr | |
| 56 | 8 | ad2antrr | |
| 57 | 9 | ad2antrr | |
| 58 | simpr | ||
| 59 | 16 54 38 55 56 57 1 58 | cofu2a | |
| 60 | 11 | ad2antrr | |
| 61 | 53 59 60 | oveq123d | Could not format ( ( ( ph /\ g e. ( X I ( F ` W ) ) ) /\ k e. ( Z H W ) ) -> ( ( ( ( F ` Z ) N ( F ` W ) ) ` ( ( Z G W ) ` k ) ) ( <. ( M ` X ) , ( M ` ( F ` Z ) ) >. .o. ( M ` ( F ` W ) ) ) ( ( X N ( F ` Z ) ) ` A ) ) = ( ( ( Z L W ) ` k ) ( <. Y , ( K ` Z ) >. .o. ( K ` W ) ) B ) ) : No typesetting found for |- ( ( ( ph /\ g e. ( X I ( F ` W ) ) ) /\ k e. ( Z H W ) ) -> ( ( ( ( F ` Z ) N ( F ` W ) ) ` ( ( Z G W ) ` k ) ) ( <. ( M ` X ) , ( M ` ( F ` Z ) ) >. .o. ( M ` ( F ` W ) ) ) ( ( X N ( F ` Z ) ) ` A ) ) = ( ( ( Z L W ) ` k ) ( <. Y , ( K ` Z ) >. .o. ( K ` W ) ) B ) ) with typecode |- |
| 62 | 47 61 | eqtrd | Could not format ( ( ( ph /\ g e. ( X I ( F ` W ) ) ) /\ k e. ( Z H W ) ) -> ( ( X N ( F ` W ) ) ` ( ( ( Z G W ) ` k ) ( <. X , ( F ` Z ) >. .xb ( F ` W ) ) A ) ) = ( ( ( Z L W ) ` k ) ( <. Y , ( K ` Z ) >. .o. ( K ` W ) ) B ) ) : No typesetting found for |- ( ( ( ph /\ g e. ( X I ( F ` W ) ) ) /\ k e. ( Z H W ) ) -> ( ( X N ( F ` W ) ) ` ( ( ( Z G W ) ` k ) ( <. X , ( F ` Z ) >. .xb ( F ` W ) ) A ) ) = ( ( ( Z L W ) ` k ) ( <. Y , ( K ` Z ) >. .o. ( K ` W ) ) B ) ) with typecode |- |
| 63 | 62 | eqeq2d | Could not format ( ( ( ph /\ g e. ( X I ( F ` W ) ) ) /\ k e. ( Z H W ) ) -> ( ( ( X N ( F ` W ) ) ` g ) = ( ( X N ( F ` W ) ) ` ( ( ( Z G W ) ` k ) ( <. X , ( F ` Z ) >. .xb ( F ` W ) ) A ) ) <-> ( ( X N ( F ` W ) ) ` g ) = ( ( ( Z L W ) ` k ) ( <. Y , ( K ` Z ) >. .o. ( K ` W ) ) B ) ) ) : No typesetting found for |- ( ( ( ph /\ g e. ( X I ( F ` W ) ) ) /\ k e. ( Z H W ) ) -> ( ( ( X N ( F ` W ) ) ` g ) = ( ( X N ( F ` W ) ) ` ( ( ( Z G W ) ` k ) ( <. X , ( F ` Z ) >. .xb ( F ` W ) ) A ) ) <-> ( ( X N ( F ` W ) ) ` g ) = ( ( ( Z L W ) ` k ) ( <. Y , ( K ` Z ) >. .o. ( K ` W ) ) B ) ) ) with typecode |- |
| 64 | f1of1 | ||
| 65 | 28 64 | syl | |
| 66 | 65 | ad2antrr | |
| 67 | simplr | ||
| 68 | 38 | funcrcl2 | |
| 69 | 15 2 4 68 39 41 42 43 46 | catcocl | |
| 70 | f1fveq | ||
| 71 | 66 67 69 70 | syl12anc | |
| 72 | 63 71 | bitr3d | Could not format ( ( ( ph /\ g e. ( X I ( F ` W ) ) ) /\ k e. ( Z H W ) ) -> ( ( ( X N ( F ` W ) ) ` g ) = ( ( ( Z L W ) ` k ) ( <. Y , ( K ` Z ) >. .o. ( K ` W ) ) B ) <-> g = ( ( ( Z G W ) ` k ) ( <. X , ( F ` Z ) >. .xb ( F ` W ) ) A ) ) ) : No typesetting found for |- ( ( ( ph /\ g e. ( X I ( F ` W ) ) ) /\ k e. ( Z H W ) ) -> ( ( ( X N ( F ` W ) ) ` g ) = ( ( ( Z L W ) ` k ) ( <. Y , ( K ` Z ) >. .o. ( K ` W ) ) B ) <-> g = ( ( ( Z G W ) ` k ) ( <. X , ( F ` Z ) >. .xb ( F ` W ) ) A ) ) ) with typecode |- |
| 73 | 72 | 3adantl3 | Could not format ( ( ( ph /\ g e. ( X I ( F ` W ) ) /\ h = ( ( X N ( F ` W ) ) ` g ) ) /\ k e. ( Z H W ) ) -> ( ( ( X N ( F ` W ) ) ` g ) = ( ( ( Z L W ) ` k ) ( <. Y , ( K ` Z ) >. .o. ( K ` W ) ) B ) <-> g = ( ( ( Z G W ) ` k ) ( <. X , ( F ` Z ) >. .xb ( F ` W ) ) A ) ) ) : No typesetting found for |- ( ( ( ph /\ g e. ( X I ( F ` W ) ) /\ h = ( ( X N ( F ` W ) ) ` g ) ) /\ k e. ( Z H W ) ) -> ( ( ( X N ( F ` W ) ) ` g ) = ( ( ( Z L W ) ` k ) ( <. Y , ( K ` Z ) >. .o. ( K ` W ) ) B ) <-> g = ( ( ( Z G W ) ` k ) ( <. X , ( F ` Z ) >. .xb ( F ` W ) ) A ) ) ) with typecode |- |
| 74 | 37 73 | bitrd | Could not format ( ( ( ph /\ g e. ( X I ( F ` W ) ) /\ h = ( ( X N ( F ` W ) ) ` g ) ) /\ k e. ( Z H W ) ) -> ( h = ( ( ( Z L W ) ` k ) ( <. Y , ( K ` Z ) >. .o. ( K ` W ) ) B ) <-> g = ( ( ( Z G W ) ` k ) ( <. X , ( F ` Z ) >. .xb ( F ` W ) ) A ) ) ) : No typesetting found for |- ( ( ( ph /\ g e. ( X I ( F ` W ) ) /\ h = ( ( X N ( F ` W ) ) ` g ) ) /\ k e. ( Z H W ) ) -> ( h = ( ( ( Z L W ) ` k ) ( <. Y , ( K ` Z ) >. .o. ( K ` W ) ) B ) <-> g = ( ( ( Z G W ) ` k ) ( <. X , ( F ` Z ) >. .xb ( F ` W ) ) A ) ) ) with typecode |- |
| 75 | 74 | reubidva | Could not format ( ( ph /\ g e. ( X I ( F ` W ) ) /\ h = ( ( X N ( F ` W ) ) ` g ) ) -> ( E! k e. ( Z H W ) h = ( ( ( Z L W ) ` k ) ( <. Y , ( K ` Z ) >. .o. ( K ` W ) ) B ) <-> E! k e. ( Z H W ) g = ( ( ( Z G W ) ` k ) ( <. X , ( F ` Z ) >. .xb ( F ` W ) ) A ) ) ) : No typesetting found for |- ( ( ph /\ g e. ( X I ( F ` W ) ) /\ h = ( ( X N ( F ` W ) ) ` g ) ) -> ( E! k e. ( Z H W ) h = ( ( ( Z L W ) ` k ) ( <. Y , ( K ` Z ) >. .o. ( K ` W ) ) B ) <-> E! k e. ( Z H W ) g = ( ( ( Z G W ) ` k ) ( <. X , ( F ` Z ) >. .xb ( F ` W ) ) A ) ) ) with typecode |- |
| 76 | 31 35 75 | ralxfrd2 | Could not format ( ph -> ( A. h e. ( Y J ( K ` W ) ) E! k e. ( Z H W ) h = ( ( ( Z L W ) ` k ) ( <. Y , ( K ` Z ) >. .o. ( K ` W ) ) B ) <-> A. g e. ( X I ( F ` W ) ) E! k e. ( Z H W ) g = ( ( ( Z G W ) ` k ) ( <. X , ( F ` Z ) >. .xb ( F ` W ) ) A ) ) ) : No typesetting found for |- ( ph -> ( A. h e. ( Y J ( K ` W ) ) E! k e. ( Z H W ) h = ( ( ( Z L W ) ` k ) ( <. Y , ( K ` Z ) >. .o. ( K ` W ) ) B ) <-> A. g e. ( X I ( F ` W ) ) E! k e. ( Z H W ) g = ( ( ( Z G W ) ` k ) ( <. X , ( F ` Z ) >. .xb ( F ` W ) ) A ) ) ) with typecode |- |