This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for upgrwlkdvde . (Contributed by Alexander van der Vekens, 27-Oct-2017) (Proof shortened by AV, 17-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | upgrwlkdvdelem | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) –1-1→ 𝑉 ∧ 𝐹 ∈ Word dom 𝐼 ) → ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } → Fun ◡ 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wrdfin | ⊢ ( 𝐹 ∈ Word dom 𝐼 → 𝐹 ∈ Fin ) | |
| 2 | wrdf | ⊢ ( 𝐹 ∈ Word dom 𝐼 → 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐼 ) | |
| 3 | simpr | ⊢ ( ( 𝐹 ∈ Fin ∧ 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐼 ) → 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐼 ) | |
| 4 | 3 | adantr | ⊢ ( ( ( 𝐹 ∈ Fin ∧ 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐼 ) ∧ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) –1-1→ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ) ) → 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐼 ) |
| 5 | 2fveq3 | ⊢ ( 𝑘 = 𝑥 → ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) | |
| 6 | fveq2 | ⊢ ( 𝑘 = 𝑥 → ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ 𝑥 ) ) | |
| 7 | fvoveq1 | ⊢ ( 𝑘 = 𝑥 → ( 𝑃 ‘ ( 𝑘 + 1 ) ) = ( 𝑃 ‘ ( 𝑥 + 1 ) ) ) | |
| 8 | 6 7 | preq12d | ⊢ ( 𝑘 = 𝑥 → { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } = { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ) |
| 9 | 5 8 | eqeq12d | ⊢ ( 𝑘 = 𝑥 → ( ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ↔ ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ) ) |
| 10 | 9 | rspcv | ⊢ ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } → ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ) ) |
| 11 | 2fveq3 | ⊢ ( 𝑘 = 𝑦 → ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑦 ) ) ) | |
| 12 | fveq2 | ⊢ ( 𝑘 = 𝑦 → ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ 𝑦 ) ) | |
| 13 | fvoveq1 | ⊢ ( 𝑘 = 𝑦 → ( 𝑃 ‘ ( 𝑘 + 1 ) ) = ( 𝑃 ‘ ( 𝑦 + 1 ) ) ) | |
| 14 | 12 13 | preq12d | ⊢ ( 𝑘 = 𝑦 → { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } = { ( 𝑃 ‘ 𝑦 ) , ( 𝑃 ‘ ( 𝑦 + 1 ) ) } ) |
| 15 | 11 14 | eqeq12d | ⊢ ( 𝑘 = 𝑦 → ( ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ↔ ( 𝐼 ‘ ( 𝐹 ‘ 𝑦 ) ) = { ( 𝑃 ‘ 𝑦 ) , ( 𝑃 ‘ ( 𝑦 + 1 ) ) } ) ) |
| 16 | 15 | rspcv | ⊢ ( 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } → ( 𝐼 ‘ ( 𝐹 ‘ 𝑦 ) ) = { ( 𝑃 ‘ 𝑦 ) , ( 𝑃 ‘ ( 𝑦 + 1 ) ) } ) ) |
| 17 | 10 16 | anim12ii | ⊢ ( ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } → ( ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 𝑦 ) ) = { ( 𝑃 ‘ 𝑦 ) , ( 𝑃 ‘ ( 𝑦 + 1 ) ) } ) ) ) |
| 18 | fveq2 | ⊢ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑦 ) ) ) | |
| 19 | simpl | ⊢ ( ( ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 𝑦 ) ) = { ( 𝑃 ‘ 𝑦 ) , ( 𝑃 ‘ ( 𝑦 + 1 ) ) } ) → ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ) | |
| 20 | 19 | eqcomd | ⊢ ( ( ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 𝑦 ) ) = { ( 𝑃 ‘ 𝑦 ) , ( 𝑃 ‘ ( 𝑦 + 1 ) ) } ) → { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } = ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
| 21 | 20 | adantl | ⊢ ( ( ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑦 ) ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 𝑦 ) ) = { ( 𝑃 ‘ 𝑦 ) , ( 𝑃 ‘ ( 𝑦 + 1 ) ) } ) ) → { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } = ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
| 22 | simpl | ⊢ ( ( ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑦 ) ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 𝑦 ) ) = { ( 𝑃 ‘ 𝑦 ) , ( 𝑃 ‘ ( 𝑦 + 1 ) ) } ) ) → ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑦 ) ) ) | |
| 23 | simpr | ⊢ ( ( ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 𝑦 ) ) = { ( 𝑃 ‘ 𝑦 ) , ( 𝑃 ‘ ( 𝑦 + 1 ) ) } ) → ( 𝐼 ‘ ( 𝐹 ‘ 𝑦 ) ) = { ( 𝑃 ‘ 𝑦 ) , ( 𝑃 ‘ ( 𝑦 + 1 ) ) } ) | |
| 24 | 23 | adantl | ⊢ ( ( ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑦 ) ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 𝑦 ) ) = { ( 𝑃 ‘ 𝑦 ) , ( 𝑃 ‘ ( 𝑦 + 1 ) ) } ) ) → ( 𝐼 ‘ ( 𝐹 ‘ 𝑦 ) ) = { ( 𝑃 ‘ 𝑦 ) , ( 𝑃 ‘ ( 𝑦 + 1 ) ) } ) |
| 25 | 21 22 24 | 3eqtrd | ⊢ ( ( ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑦 ) ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 𝑦 ) ) = { ( 𝑃 ‘ 𝑦 ) , ( 𝑃 ‘ ( 𝑦 + 1 ) ) } ) ) → { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } = { ( 𝑃 ‘ 𝑦 ) , ( 𝑃 ‘ ( 𝑦 + 1 ) ) } ) |
| 26 | fvex | ⊢ ( 𝑃 ‘ 𝑥 ) ∈ V | |
| 27 | fvex | ⊢ ( 𝑃 ‘ ( 𝑥 + 1 ) ) ∈ V | |
| 28 | fvex | ⊢ ( 𝑃 ‘ 𝑦 ) ∈ V | |
| 29 | fvex | ⊢ ( 𝑃 ‘ ( 𝑦 + 1 ) ) ∈ V | |
| 30 | 26 27 28 29 | preq12b | ⊢ ( { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } = { ( 𝑃 ‘ 𝑦 ) , ( 𝑃 ‘ ( 𝑦 + 1 ) ) } ↔ ( ( ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ 𝑦 ) ∧ ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑃 ‘ ( 𝑦 + 1 ) ) ) ∨ ( ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ ( 𝑦 + 1 ) ) ∧ ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑃 ‘ 𝑦 ) ) ) ) |
| 31 | dff13 | ⊢ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) –1-1→ 𝑉 ↔ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑎 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ∀ 𝑏 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ( ( 𝑃 ‘ 𝑎 ) = ( 𝑃 ‘ 𝑏 ) → 𝑎 = 𝑏 ) ) ) | |
| 32 | elfzofz | ⊢ ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → 𝑥 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) | |
| 33 | elfzofz | ⊢ ( 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → 𝑦 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) | |
| 34 | fveqeq2 | ⊢ ( 𝑎 = 𝑥 → ( ( 𝑃 ‘ 𝑎 ) = ( 𝑃 ‘ 𝑏 ) ↔ ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ 𝑏 ) ) ) | |
| 35 | eqeq1 | ⊢ ( 𝑎 = 𝑥 → ( 𝑎 = 𝑏 ↔ 𝑥 = 𝑏 ) ) | |
| 36 | 34 35 | imbi12d | ⊢ ( 𝑎 = 𝑥 → ( ( ( 𝑃 ‘ 𝑎 ) = ( 𝑃 ‘ 𝑏 ) → 𝑎 = 𝑏 ) ↔ ( ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ 𝑏 ) → 𝑥 = 𝑏 ) ) ) |
| 37 | fveq2 | ⊢ ( 𝑏 = 𝑦 → ( 𝑃 ‘ 𝑏 ) = ( 𝑃 ‘ 𝑦 ) ) | |
| 38 | 37 | eqeq2d | ⊢ ( 𝑏 = 𝑦 → ( ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ 𝑏 ) ↔ ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ 𝑦 ) ) ) |
| 39 | eqeq2 | ⊢ ( 𝑏 = 𝑦 → ( 𝑥 = 𝑏 ↔ 𝑥 = 𝑦 ) ) | |
| 40 | 38 39 | imbi12d | ⊢ ( 𝑏 = 𝑦 → ( ( ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ 𝑏 ) → 𝑥 = 𝑏 ) ↔ ( ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
| 41 | 36 40 | rspc2v | ⊢ ( ( 𝑥 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ∧ 𝑦 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → ( ∀ 𝑎 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ∀ 𝑏 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ( ( 𝑃 ‘ 𝑎 ) = ( 𝑃 ‘ 𝑏 ) → 𝑎 = 𝑏 ) → ( ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
| 42 | 32 33 41 | syl2an | ⊢ ( ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ∀ 𝑎 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ∀ 𝑏 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ( ( 𝑃 ‘ 𝑎 ) = ( 𝑃 ‘ 𝑏 ) → 𝑎 = 𝑏 ) → ( ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
| 43 | 42 | a1dd | ⊢ ( ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ∀ 𝑎 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ∀ 𝑏 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ( ( 𝑃 ‘ 𝑎 ) = ( 𝑃 ‘ 𝑏 ) → 𝑎 = 𝑏 ) → ( 𝐹 ∈ Fin → ( ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) ) |
| 44 | 43 | com14 | ⊢ ( ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ 𝑦 ) → ( ∀ 𝑎 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ∀ 𝑏 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ( ( 𝑃 ‘ 𝑎 ) = ( 𝑃 ‘ 𝑏 ) → 𝑎 = 𝑏 ) → ( 𝐹 ∈ Fin → ( ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → 𝑥 = 𝑦 ) ) ) ) |
| 45 | 44 | adantr | ⊢ ( ( ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ 𝑦 ) ∧ ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑃 ‘ ( 𝑦 + 1 ) ) ) → ( ∀ 𝑎 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ∀ 𝑏 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ( ( 𝑃 ‘ 𝑎 ) = ( 𝑃 ‘ 𝑏 ) → 𝑎 = 𝑏 ) → ( 𝐹 ∈ Fin → ( ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → 𝑥 = 𝑦 ) ) ) ) |
| 46 | hashcl | ⊢ ( 𝐹 ∈ Fin → ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) | |
| 47 | 32 | a1i | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → 𝑥 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) ) |
| 48 | fzofzp1 | ⊢ ( 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( 𝑦 + 1 ) ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) | |
| 49 | 47 48 | anim12d1 | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝑥 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ∧ ( 𝑦 + 1 ) ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) ) ) |
| 50 | 49 | imp | ⊢ ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) → ( 𝑥 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ∧ ( 𝑦 + 1 ) ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) ) |
| 51 | fveq2 | ⊢ ( 𝑏 = ( 𝑦 + 1 ) → ( 𝑃 ‘ 𝑏 ) = ( 𝑃 ‘ ( 𝑦 + 1 ) ) ) | |
| 52 | 51 | eqeq2d | ⊢ ( 𝑏 = ( 𝑦 + 1 ) → ( ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ 𝑏 ) ↔ ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ ( 𝑦 + 1 ) ) ) ) |
| 53 | eqeq2 | ⊢ ( 𝑏 = ( 𝑦 + 1 ) → ( 𝑥 = 𝑏 ↔ 𝑥 = ( 𝑦 + 1 ) ) ) | |
| 54 | 52 53 | imbi12d | ⊢ ( 𝑏 = ( 𝑦 + 1 ) → ( ( ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ 𝑏 ) → 𝑥 = 𝑏 ) ↔ ( ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ ( 𝑦 + 1 ) ) → 𝑥 = ( 𝑦 + 1 ) ) ) ) |
| 55 | 36 54 | rspc2v | ⊢ ( ( 𝑥 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ∧ ( 𝑦 + 1 ) ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → ( ∀ 𝑎 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ∀ 𝑏 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ( ( 𝑃 ‘ 𝑎 ) = ( 𝑃 ‘ 𝑏 ) → 𝑎 = 𝑏 ) → ( ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ ( 𝑦 + 1 ) ) → 𝑥 = ( 𝑦 + 1 ) ) ) ) |
| 56 | 50 55 | syl | ⊢ ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) → ( ∀ 𝑎 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ∀ 𝑏 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ( ( 𝑃 ‘ 𝑎 ) = ( 𝑃 ‘ 𝑏 ) → 𝑎 = 𝑏 ) → ( ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ ( 𝑦 + 1 ) ) → 𝑥 = ( 𝑦 + 1 ) ) ) ) |
| 57 | 56 | imp | ⊢ ( ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ∧ ∀ 𝑎 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ∀ 𝑏 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ( ( 𝑃 ‘ 𝑎 ) = ( 𝑃 ‘ 𝑏 ) → 𝑎 = 𝑏 ) ) → ( ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ ( 𝑦 + 1 ) ) → 𝑥 = ( 𝑦 + 1 ) ) ) |
| 58 | fzofzp1 | ⊢ ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( 𝑥 + 1 ) ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) | |
| 59 | 58 | a1i | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( 𝑥 + 1 ) ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) ) |
| 60 | 59 33 | anim12d1 | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝑥 + 1 ) ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ∧ 𝑦 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) ) ) |
| 61 | 60 | imp | ⊢ ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) → ( ( 𝑥 + 1 ) ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ∧ 𝑦 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) ) |
| 62 | fveqeq2 | ⊢ ( 𝑎 = ( 𝑥 + 1 ) → ( ( 𝑃 ‘ 𝑎 ) = ( 𝑃 ‘ 𝑏 ) ↔ ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑃 ‘ 𝑏 ) ) ) | |
| 63 | eqeq1 | ⊢ ( 𝑎 = ( 𝑥 + 1 ) → ( 𝑎 = 𝑏 ↔ ( 𝑥 + 1 ) = 𝑏 ) ) | |
| 64 | 62 63 | imbi12d | ⊢ ( 𝑎 = ( 𝑥 + 1 ) → ( ( ( 𝑃 ‘ 𝑎 ) = ( 𝑃 ‘ 𝑏 ) → 𝑎 = 𝑏 ) ↔ ( ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑃 ‘ 𝑏 ) → ( 𝑥 + 1 ) = 𝑏 ) ) ) |
| 65 | 37 | eqeq2d | ⊢ ( 𝑏 = 𝑦 → ( ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑃 ‘ 𝑏 ) ↔ ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑃 ‘ 𝑦 ) ) ) |
| 66 | eqeq2 | ⊢ ( 𝑏 = 𝑦 → ( ( 𝑥 + 1 ) = 𝑏 ↔ ( 𝑥 + 1 ) = 𝑦 ) ) | |
| 67 | 65 66 | imbi12d | ⊢ ( 𝑏 = 𝑦 → ( ( ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑃 ‘ 𝑏 ) → ( 𝑥 + 1 ) = 𝑏 ) ↔ ( ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑃 ‘ 𝑦 ) → ( 𝑥 + 1 ) = 𝑦 ) ) ) |
| 68 | 64 67 | rspc2v | ⊢ ( ( ( 𝑥 + 1 ) ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ∧ 𝑦 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → ( ∀ 𝑎 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ∀ 𝑏 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ( ( 𝑃 ‘ 𝑎 ) = ( 𝑃 ‘ 𝑏 ) → 𝑎 = 𝑏 ) → ( ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑃 ‘ 𝑦 ) → ( 𝑥 + 1 ) = 𝑦 ) ) ) |
| 69 | 61 68 | syl | ⊢ ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) → ( ∀ 𝑎 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ∀ 𝑏 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ( ( 𝑃 ‘ 𝑎 ) = ( 𝑃 ‘ 𝑏 ) → 𝑎 = 𝑏 ) → ( ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑃 ‘ 𝑦 ) → ( 𝑥 + 1 ) = 𝑦 ) ) ) |
| 70 | 69 | imp | ⊢ ( ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ∧ ∀ 𝑎 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ∀ 𝑏 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ( ( 𝑃 ‘ 𝑎 ) = ( 𝑃 ‘ 𝑏 ) → 𝑎 = 𝑏 ) ) → ( ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑃 ‘ 𝑦 ) → ( 𝑥 + 1 ) = 𝑦 ) ) |
| 71 | 57 70 | anim12d | ⊢ ( ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ∧ ∀ 𝑎 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ∀ 𝑏 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ( ( 𝑃 ‘ 𝑎 ) = ( 𝑃 ‘ 𝑏 ) → 𝑎 = 𝑏 ) ) → ( ( ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ ( 𝑦 + 1 ) ) ∧ ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑃 ‘ 𝑦 ) ) → ( 𝑥 = ( 𝑦 + 1 ) ∧ ( 𝑥 + 1 ) = 𝑦 ) ) ) |
| 72 | 71 | expimpd | ⊢ ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) → ( ( ∀ 𝑎 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ∀ 𝑏 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ( ( 𝑃 ‘ 𝑎 ) = ( 𝑃 ‘ 𝑏 ) → 𝑎 = 𝑏 ) ∧ ( ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ ( 𝑦 + 1 ) ) ∧ ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑃 ‘ 𝑦 ) ) ) → ( 𝑥 = ( 𝑦 + 1 ) ∧ ( 𝑥 + 1 ) = 𝑦 ) ) ) |
| 73 | oveq1 | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝑥 + 1 ) = ( ( 𝑦 + 1 ) + 1 ) ) | |
| 74 | 73 | eqeq1d | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( 𝑥 + 1 ) = 𝑦 ↔ ( ( 𝑦 + 1 ) + 1 ) = 𝑦 ) ) |
| 75 | 74 | adantl | ⊢ ( ( ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ 𝑥 = ( 𝑦 + 1 ) ) → ( ( 𝑥 + 1 ) = 𝑦 ↔ ( ( 𝑦 + 1 ) + 1 ) = 𝑦 ) ) |
| 76 | elfzonn0 | ⊢ ( 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → 𝑦 ∈ ℕ0 ) | |
| 77 | nn0cn | ⊢ ( 𝑦 ∈ ℕ0 → 𝑦 ∈ ℂ ) | |
| 78 | add1p1 | ⊢ ( 𝑦 ∈ ℂ → ( ( 𝑦 + 1 ) + 1 ) = ( 𝑦 + 2 ) ) | |
| 79 | 77 78 | syl | ⊢ ( 𝑦 ∈ ℕ0 → ( ( 𝑦 + 1 ) + 1 ) = ( 𝑦 + 2 ) ) |
| 80 | 79 | eqeq1d | ⊢ ( 𝑦 ∈ ℕ0 → ( ( ( 𝑦 + 1 ) + 1 ) = 𝑦 ↔ ( 𝑦 + 2 ) = 𝑦 ) ) |
| 81 | 2cnd | ⊢ ( 𝑦 ∈ ℕ0 → 2 ∈ ℂ ) | |
| 82 | 2ne0 | ⊢ 2 ≠ 0 | |
| 83 | 82 | a1i | ⊢ ( 𝑦 ∈ ℕ0 → 2 ≠ 0 ) |
| 84 | addn0nid | ⊢ ( ( 𝑦 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0 ) → ( 𝑦 + 2 ) ≠ 𝑦 ) | |
| 85 | 77 81 83 84 | syl3anc | ⊢ ( 𝑦 ∈ ℕ0 → ( 𝑦 + 2 ) ≠ 𝑦 ) |
| 86 | eqneqall | ⊢ ( ( 𝑦 + 2 ) = 𝑦 → ( ( 𝑦 + 2 ) ≠ 𝑦 → 𝑥 = 𝑦 ) ) | |
| 87 | 85 86 | syl5com | ⊢ ( 𝑦 ∈ ℕ0 → ( ( 𝑦 + 2 ) = 𝑦 → 𝑥 = 𝑦 ) ) |
| 88 | 80 87 | sylbid | ⊢ ( 𝑦 ∈ ℕ0 → ( ( ( 𝑦 + 1 ) + 1 ) = 𝑦 → 𝑥 = 𝑦 ) ) |
| 89 | 76 88 | syl | ⊢ ( 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( ( ( 𝑦 + 1 ) + 1 ) = 𝑦 → 𝑥 = 𝑦 ) ) |
| 90 | 89 | adantl | ⊢ ( ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( ( 𝑦 + 1 ) + 1 ) = 𝑦 → 𝑥 = 𝑦 ) ) |
| 91 | 90 | adantr | ⊢ ( ( ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ 𝑥 = ( 𝑦 + 1 ) ) → ( ( ( 𝑦 + 1 ) + 1 ) = 𝑦 → 𝑥 = 𝑦 ) ) |
| 92 | 75 91 | sylbid | ⊢ ( ( ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ 𝑥 = ( 𝑦 + 1 ) ) → ( ( 𝑥 + 1 ) = 𝑦 → 𝑥 = 𝑦 ) ) |
| 93 | 92 | expimpd | ⊢ ( ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝑥 = ( 𝑦 + 1 ) ∧ ( 𝑥 + 1 ) = 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 94 | 93 | adantl | ⊢ ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) → ( ( 𝑥 = ( 𝑦 + 1 ) ∧ ( 𝑥 + 1 ) = 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 95 | 72 94 | syld | ⊢ ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) → ( ( ∀ 𝑎 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ∀ 𝑏 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ( ( 𝑃 ‘ 𝑎 ) = ( 𝑃 ‘ 𝑏 ) → 𝑎 = 𝑏 ) ∧ ( ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ ( 𝑦 + 1 ) ) ∧ ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑃 ‘ 𝑦 ) ) ) → 𝑥 = 𝑦 ) ) |
| 96 | 95 | ex | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( ∀ 𝑎 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ∀ 𝑏 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ( ( 𝑃 ‘ 𝑎 ) = ( 𝑃 ‘ 𝑏 ) → 𝑎 = 𝑏 ) ∧ ( ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ ( 𝑦 + 1 ) ) ∧ ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑃 ‘ 𝑦 ) ) ) → 𝑥 = 𝑦 ) ) ) |
| 97 | 46 96 | syl | ⊢ ( 𝐹 ∈ Fin → ( ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( ∀ 𝑎 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ∀ 𝑏 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ( ( 𝑃 ‘ 𝑎 ) = ( 𝑃 ‘ 𝑏 ) → 𝑎 = 𝑏 ) ∧ ( ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ ( 𝑦 + 1 ) ) ∧ ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑃 ‘ 𝑦 ) ) ) → 𝑥 = 𝑦 ) ) ) |
| 98 | 97 | com3l | ⊢ ( ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( ∀ 𝑎 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ∀ 𝑏 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ( ( 𝑃 ‘ 𝑎 ) = ( 𝑃 ‘ 𝑏 ) → 𝑎 = 𝑏 ) ∧ ( ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ ( 𝑦 + 1 ) ) ∧ ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑃 ‘ 𝑦 ) ) ) → ( 𝐹 ∈ Fin → 𝑥 = 𝑦 ) ) ) |
| 99 | 98 | expd | ⊢ ( ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ∀ 𝑎 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ∀ 𝑏 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ( ( 𝑃 ‘ 𝑎 ) = ( 𝑃 ‘ 𝑏 ) → 𝑎 = 𝑏 ) → ( ( ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ ( 𝑦 + 1 ) ) ∧ ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑃 ‘ 𝑦 ) ) → ( 𝐹 ∈ Fin → 𝑥 = 𝑦 ) ) ) ) |
| 100 | 99 | com34 | ⊢ ( ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ∀ 𝑎 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ∀ 𝑏 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ( ( 𝑃 ‘ 𝑎 ) = ( 𝑃 ‘ 𝑏 ) → 𝑎 = 𝑏 ) → ( 𝐹 ∈ Fin → ( ( ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ ( 𝑦 + 1 ) ) ∧ ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑃 ‘ 𝑦 ) ) → 𝑥 = 𝑦 ) ) ) ) |
| 101 | 100 | com14 | ⊢ ( ( ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ ( 𝑦 + 1 ) ) ∧ ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑃 ‘ 𝑦 ) ) → ( ∀ 𝑎 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ∀ 𝑏 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ( ( 𝑃 ‘ 𝑎 ) = ( 𝑃 ‘ 𝑏 ) → 𝑎 = 𝑏 ) → ( 𝐹 ∈ Fin → ( ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → 𝑥 = 𝑦 ) ) ) ) |
| 102 | 45 101 | jaoi | ⊢ ( ( ( ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ 𝑦 ) ∧ ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑃 ‘ ( 𝑦 + 1 ) ) ) ∨ ( ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ ( 𝑦 + 1 ) ) ∧ ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑃 ‘ 𝑦 ) ) ) → ( ∀ 𝑎 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ∀ 𝑏 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ( ( 𝑃 ‘ 𝑎 ) = ( 𝑃 ‘ 𝑏 ) → 𝑎 = 𝑏 ) → ( 𝐹 ∈ Fin → ( ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → 𝑥 = 𝑦 ) ) ) ) |
| 103 | 102 | adantld | ⊢ ( ( ( ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ 𝑦 ) ∧ ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑃 ‘ ( 𝑦 + 1 ) ) ) ∨ ( ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ ( 𝑦 + 1 ) ) ∧ ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑃 ‘ 𝑦 ) ) ) → ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑎 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ∀ 𝑏 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ( ( 𝑃 ‘ 𝑎 ) = ( 𝑃 ‘ 𝑏 ) → 𝑎 = 𝑏 ) ) → ( 𝐹 ∈ Fin → ( ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → 𝑥 = 𝑦 ) ) ) ) |
| 104 | 31 103 | biimtrid | ⊢ ( ( ( ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ 𝑦 ) ∧ ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑃 ‘ ( 𝑦 + 1 ) ) ) ∨ ( ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ ( 𝑦 + 1 ) ) ∧ ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑃 ‘ 𝑦 ) ) ) → ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) –1-1→ 𝑉 → ( 𝐹 ∈ Fin → ( ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → 𝑥 = 𝑦 ) ) ) ) |
| 105 | 104 | com23 | ⊢ ( ( ( ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ 𝑦 ) ∧ ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑃 ‘ ( 𝑦 + 1 ) ) ) ∨ ( ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ ( 𝑦 + 1 ) ) ∧ ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑃 ‘ 𝑦 ) ) ) → ( 𝐹 ∈ Fin → ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) –1-1→ 𝑉 → ( ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → 𝑥 = 𝑦 ) ) ) ) |
| 106 | 30 105 | sylbi | ⊢ ( { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } = { ( 𝑃 ‘ 𝑦 ) , ( 𝑃 ‘ ( 𝑦 + 1 ) ) } → ( 𝐹 ∈ Fin → ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) –1-1→ 𝑉 → ( ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → 𝑥 = 𝑦 ) ) ) ) |
| 107 | 25 106 | syl | ⊢ ( ( ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑦 ) ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 𝑦 ) ) = { ( 𝑃 ‘ 𝑦 ) , ( 𝑃 ‘ ( 𝑦 + 1 ) ) } ) ) → ( 𝐹 ∈ Fin → ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) –1-1→ 𝑉 → ( ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → 𝑥 = 𝑦 ) ) ) ) |
| 108 | 107 | ex | ⊢ ( ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑦 ) ) → ( ( ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 𝑦 ) ) = { ( 𝑃 ‘ 𝑦 ) , ( 𝑃 ‘ ( 𝑦 + 1 ) ) } ) → ( 𝐹 ∈ Fin → ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) –1-1→ 𝑉 → ( ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → 𝑥 = 𝑦 ) ) ) ) ) |
| 109 | 18 108 | syl | ⊢ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → ( ( ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 𝑦 ) ) = { ( 𝑃 ‘ 𝑦 ) , ( 𝑃 ‘ ( 𝑦 + 1 ) ) } ) → ( 𝐹 ∈ Fin → ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) –1-1→ 𝑉 → ( ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → 𝑥 = 𝑦 ) ) ) ) ) |
| 110 | 109 | com15 | ⊢ ( ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 𝑦 ) ) = { ( 𝑃 ‘ 𝑦 ) , ( 𝑃 ‘ ( 𝑦 + 1 ) ) } ) → ( 𝐹 ∈ Fin → ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) –1-1→ 𝑉 → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) ) ) |
| 111 | 17 110 | syld | ⊢ ( ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } → ( 𝐹 ∈ Fin → ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) –1-1→ 𝑉 → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) ) ) |
| 112 | 111 | com14 | ⊢ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) –1-1→ 𝑉 → ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } → ( 𝐹 ∈ Fin → ( ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) ) ) |
| 113 | 112 | imp | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) –1-1→ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ) → ( 𝐹 ∈ Fin → ( ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) ) |
| 114 | 113 | impcom | ⊢ ( ( 𝐹 ∈ Fin ∧ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) –1-1→ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ) ) → ( ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
| 115 | 114 | ralrimivv | ⊢ ( ( 𝐹 ∈ Fin ∧ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) –1-1→ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ) ) → ∀ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∀ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 116 | 115 | adantlr | ⊢ ( ( ( 𝐹 ∈ Fin ∧ 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐼 ) ∧ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) –1-1→ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ) ) → ∀ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∀ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 117 | dff13 | ⊢ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ↔ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐼 ∧ ∀ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∀ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) | |
| 118 | 4 116 117 | sylanbrc | ⊢ ( ( ( 𝐹 ∈ Fin ∧ 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐼 ) ∧ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) –1-1→ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ) ) → 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ) |
| 119 | df-f1 | ⊢ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ↔ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐼 ∧ Fun ◡ 𝐹 ) ) | |
| 120 | 118 119 | sylib | ⊢ ( ( ( 𝐹 ∈ Fin ∧ 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐼 ) ∧ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) –1-1→ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ) ) → ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐼 ∧ Fun ◡ 𝐹 ) ) |
| 121 | simpr | ⊢ ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐼 ∧ Fun ◡ 𝐹 ) → Fun ◡ 𝐹 ) | |
| 122 | 120 121 | syl | ⊢ ( ( ( 𝐹 ∈ Fin ∧ 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐼 ) ∧ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) –1-1→ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ) ) → Fun ◡ 𝐹 ) |
| 123 | 122 | ex | ⊢ ( ( 𝐹 ∈ Fin ∧ 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐼 ) → ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) –1-1→ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ) → Fun ◡ 𝐹 ) ) |
| 124 | 123 | expd | ⊢ ( ( 𝐹 ∈ Fin ∧ 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐼 ) → ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) –1-1→ 𝑉 → ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } → Fun ◡ 𝐹 ) ) ) |
| 125 | 1 2 124 | syl2anc | ⊢ ( 𝐹 ∈ Word dom 𝐼 → ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) –1-1→ 𝑉 → ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } → Fun ◡ 𝐹 ) ) ) |
| 126 | 125 | impcom | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) –1-1→ 𝑉 ∧ 𝐹 ∈ Word dom 𝐼 ) → ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } → Fun ◡ 𝐹 ) ) |