This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality relationship for two unordered pairs. (Contributed by NM, 17-Oct-1996)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | preqr1.a | ⊢ 𝐴 ∈ V | |
| preqr1.b | ⊢ 𝐵 ∈ V | ||
| preq12b.c | ⊢ 𝐶 ∈ V | ||
| preq12b.d | ⊢ 𝐷 ∈ V | ||
| Assertion | preq12b | ⊢ ( { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ↔ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preqr1.a | ⊢ 𝐴 ∈ V | |
| 2 | preqr1.b | ⊢ 𝐵 ∈ V | |
| 3 | preq12b.c | ⊢ 𝐶 ∈ V | |
| 4 | preq12b.d | ⊢ 𝐷 ∈ V | |
| 5 | 1 | prid1 | ⊢ 𝐴 ∈ { 𝐴 , 𝐵 } |
| 6 | eleq2 | ⊢ ( { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } → ( 𝐴 ∈ { 𝐴 , 𝐵 } ↔ 𝐴 ∈ { 𝐶 , 𝐷 } ) ) | |
| 7 | 5 6 | mpbii | ⊢ ( { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } → 𝐴 ∈ { 𝐶 , 𝐷 } ) |
| 8 | 1 | elpr | ⊢ ( 𝐴 ∈ { 𝐶 , 𝐷 } ↔ ( 𝐴 = 𝐶 ∨ 𝐴 = 𝐷 ) ) |
| 9 | 7 8 | sylib | ⊢ ( { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } → ( 𝐴 = 𝐶 ∨ 𝐴 = 𝐷 ) ) |
| 10 | preq1 | ⊢ ( 𝐴 = 𝐶 → { 𝐴 , 𝐵 } = { 𝐶 , 𝐵 } ) | |
| 11 | 10 | eqeq1d | ⊢ ( 𝐴 = 𝐶 → ( { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ↔ { 𝐶 , 𝐵 } = { 𝐶 , 𝐷 } ) ) |
| 12 | 2 4 | preqr2 | ⊢ ( { 𝐶 , 𝐵 } = { 𝐶 , 𝐷 } → 𝐵 = 𝐷 ) |
| 13 | 11 12 | biimtrdi | ⊢ ( 𝐴 = 𝐶 → ( { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } → 𝐵 = 𝐷 ) ) |
| 14 | 13 | com12 | ⊢ ( { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } → ( 𝐴 = 𝐶 → 𝐵 = 𝐷 ) ) |
| 15 | 14 | ancld | ⊢ ( { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } → ( 𝐴 = 𝐶 → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) |
| 16 | prcom | ⊢ { 𝐶 , 𝐷 } = { 𝐷 , 𝐶 } | |
| 17 | 16 | eqeq2i | ⊢ ( { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ↔ { 𝐴 , 𝐵 } = { 𝐷 , 𝐶 } ) |
| 18 | preq1 | ⊢ ( 𝐴 = 𝐷 → { 𝐴 , 𝐵 } = { 𝐷 , 𝐵 } ) | |
| 19 | 18 | eqeq1d | ⊢ ( 𝐴 = 𝐷 → ( { 𝐴 , 𝐵 } = { 𝐷 , 𝐶 } ↔ { 𝐷 , 𝐵 } = { 𝐷 , 𝐶 } ) ) |
| 20 | 2 3 | preqr2 | ⊢ ( { 𝐷 , 𝐵 } = { 𝐷 , 𝐶 } → 𝐵 = 𝐶 ) |
| 21 | 19 20 | biimtrdi | ⊢ ( 𝐴 = 𝐷 → ( { 𝐴 , 𝐵 } = { 𝐷 , 𝐶 } → 𝐵 = 𝐶 ) ) |
| 22 | 21 | com12 | ⊢ ( { 𝐴 , 𝐵 } = { 𝐷 , 𝐶 } → ( 𝐴 = 𝐷 → 𝐵 = 𝐶 ) ) |
| 23 | 17 22 | sylbi | ⊢ ( { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } → ( 𝐴 = 𝐷 → 𝐵 = 𝐶 ) ) |
| 24 | 23 | ancld | ⊢ ( { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } → ( 𝐴 = 𝐷 → ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ) |
| 25 | 15 24 | orim12d | ⊢ ( { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } → ( ( 𝐴 = 𝐶 ∨ 𝐴 = 𝐷 ) → ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ) ) |
| 26 | 9 25 | mpd | ⊢ ( { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } → ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ) |
| 27 | preq12 | ⊢ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) → { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ) | |
| 28 | preq12 | ⊢ ( ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) → { 𝐴 , 𝐵 } = { 𝐷 , 𝐶 } ) | |
| 29 | prcom | ⊢ { 𝐷 , 𝐶 } = { 𝐶 , 𝐷 } | |
| 30 | 28 29 | eqtrdi | ⊢ ( ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) → { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ) |
| 31 | 27 30 | jaoi | ⊢ ( ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) → { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ) |
| 32 | 26 31 | impbii | ⊢ ( { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ↔ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ) |