This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A unitary operator in Hilbert space is one-to-one and onto. (Contributed by NM, 22-Jan-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | unopf1o | ⊢ ( 𝑇 ∈ UniOp → 𝑇 : ℋ –1-1-onto→ ℋ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elunop | ⊢ ( 𝑇 ∈ UniOp ↔ ( 𝑇 : ℋ –onto→ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih ( 𝑇 ‘ 𝑦 ) ) = ( 𝑥 ·ih 𝑦 ) ) ) | |
| 2 | 1 | simplbi | ⊢ ( 𝑇 ∈ UniOp → 𝑇 : ℋ –onto→ ℋ ) |
| 3 | fof | ⊢ ( 𝑇 : ℋ –onto→ ℋ → 𝑇 : ℋ ⟶ ℋ ) | |
| 4 | 2 3 | syl | ⊢ ( 𝑇 ∈ UniOp → 𝑇 : ℋ ⟶ ℋ ) |
| 5 | unop | ⊢ ( ( 𝑇 ∈ UniOp ∧ 𝑥 ∈ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑥 ) ·ih ( 𝑇 ‘ 𝑥 ) ) = ( 𝑥 ·ih 𝑥 ) ) | |
| 6 | 5 | 3anidm23 | ⊢ ( ( 𝑇 ∈ UniOp ∧ 𝑥 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑥 ) ·ih ( 𝑇 ‘ 𝑥 ) ) = ( 𝑥 ·ih 𝑥 ) ) |
| 7 | 6 | 3adant3 | ⊢ ( ( 𝑇 ∈ UniOp ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑥 ) ·ih ( 𝑇 ‘ 𝑥 ) ) = ( 𝑥 ·ih 𝑥 ) ) |
| 8 | unop | ⊢ ( ( 𝑇 ∈ UniOp ∧ 𝑦 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑦 ) ·ih ( 𝑇 ‘ 𝑦 ) ) = ( 𝑦 ·ih 𝑦 ) ) | |
| 9 | 8 | 3anidm23 | ⊢ ( ( 𝑇 ∈ UniOp ∧ 𝑦 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑦 ) ·ih ( 𝑇 ‘ 𝑦 ) ) = ( 𝑦 ·ih 𝑦 ) ) |
| 10 | 9 | 3adant2 | ⊢ ( ( 𝑇 ∈ UniOp ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑦 ) ·ih ( 𝑇 ‘ 𝑦 ) ) = ( 𝑦 ·ih 𝑦 ) ) |
| 11 | 7 10 | oveq12d | ⊢ ( ( 𝑇 ∈ UniOp ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( ( 𝑇 ‘ 𝑥 ) ·ih ( 𝑇 ‘ 𝑥 ) ) + ( ( 𝑇 ‘ 𝑦 ) ·ih ( 𝑇 ‘ 𝑦 ) ) ) = ( ( 𝑥 ·ih 𝑥 ) + ( 𝑦 ·ih 𝑦 ) ) ) |
| 12 | unop | ⊢ ( ( 𝑇 ∈ UniOp ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑥 ) ·ih ( 𝑇 ‘ 𝑦 ) ) = ( 𝑥 ·ih 𝑦 ) ) | |
| 13 | unop | ⊢ ( ( 𝑇 ∈ UniOp ∧ 𝑦 ∈ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑦 ) ·ih ( 𝑇 ‘ 𝑥 ) ) = ( 𝑦 ·ih 𝑥 ) ) | |
| 14 | 13 | 3com23 | ⊢ ( ( 𝑇 ∈ UniOp ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑦 ) ·ih ( 𝑇 ‘ 𝑥 ) ) = ( 𝑦 ·ih 𝑥 ) ) |
| 15 | 12 14 | oveq12d | ⊢ ( ( 𝑇 ∈ UniOp ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( ( 𝑇 ‘ 𝑥 ) ·ih ( 𝑇 ‘ 𝑦 ) ) + ( ( 𝑇 ‘ 𝑦 ) ·ih ( 𝑇 ‘ 𝑥 ) ) ) = ( ( 𝑥 ·ih 𝑦 ) + ( 𝑦 ·ih 𝑥 ) ) ) |
| 16 | 11 15 | oveq12d | ⊢ ( ( 𝑇 ∈ UniOp ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( ( ( 𝑇 ‘ 𝑥 ) ·ih ( 𝑇 ‘ 𝑥 ) ) + ( ( 𝑇 ‘ 𝑦 ) ·ih ( 𝑇 ‘ 𝑦 ) ) ) − ( ( ( 𝑇 ‘ 𝑥 ) ·ih ( 𝑇 ‘ 𝑦 ) ) + ( ( 𝑇 ‘ 𝑦 ) ·ih ( 𝑇 ‘ 𝑥 ) ) ) ) = ( ( ( 𝑥 ·ih 𝑥 ) + ( 𝑦 ·ih 𝑦 ) ) − ( ( 𝑥 ·ih 𝑦 ) + ( 𝑦 ·ih 𝑥 ) ) ) ) |
| 17 | 16 | 3expb | ⊢ ( ( 𝑇 ∈ UniOp ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ( ( ( 𝑇 ‘ 𝑥 ) ·ih ( 𝑇 ‘ 𝑥 ) ) + ( ( 𝑇 ‘ 𝑦 ) ·ih ( 𝑇 ‘ 𝑦 ) ) ) − ( ( ( 𝑇 ‘ 𝑥 ) ·ih ( 𝑇 ‘ 𝑦 ) ) + ( ( 𝑇 ‘ 𝑦 ) ·ih ( 𝑇 ‘ 𝑥 ) ) ) ) = ( ( ( 𝑥 ·ih 𝑥 ) + ( 𝑦 ·ih 𝑦 ) ) − ( ( 𝑥 ·ih 𝑦 ) + ( 𝑦 ·ih 𝑥 ) ) ) ) |
| 18 | ffvelcdm | ⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( 𝑇 ‘ 𝑥 ) ∈ ℋ ) | |
| 19 | ffvelcdm | ⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑇 ‘ 𝑦 ) ∈ ℋ ) | |
| 20 | 18 19 | anim12dan | ⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ( 𝑇 ‘ 𝑥 ) ∈ ℋ ∧ ( 𝑇 ‘ 𝑦 ) ∈ ℋ ) ) |
| 21 | 4 20 | sylan | ⊢ ( ( 𝑇 ∈ UniOp ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ( 𝑇 ‘ 𝑥 ) ∈ ℋ ∧ ( 𝑇 ‘ 𝑦 ) ∈ ℋ ) ) |
| 22 | normlem9at | ⊢ ( ( ( 𝑇 ‘ 𝑥 ) ∈ ℋ ∧ ( 𝑇 ‘ 𝑦 ) ∈ ℋ ) → ( ( ( 𝑇 ‘ 𝑥 ) −ℎ ( 𝑇 ‘ 𝑦 ) ) ·ih ( ( 𝑇 ‘ 𝑥 ) −ℎ ( 𝑇 ‘ 𝑦 ) ) ) = ( ( ( ( 𝑇 ‘ 𝑥 ) ·ih ( 𝑇 ‘ 𝑥 ) ) + ( ( 𝑇 ‘ 𝑦 ) ·ih ( 𝑇 ‘ 𝑦 ) ) ) − ( ( ( 𝑇 ‘ 𝑥 ) ·ih ( 𝑇 ‘ 𝑦 ) ) + ( ( 𝑇 ‘ 𝑦 ) ·ih ( 𝑇 ‘ 𝑥 ) ) ) ) ) | |
| 23 | 21 22 | syl | ⊢ ( ( 𝑇 ∈ UniOp ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ( ( 𝑇 ‘ 𝑥 ) −ℎ ( 𝑇 ‘ 𝑦 ) ) ·ih ( ( 𝑇 ‘ 𝑥 ) −ℎ ( 𝑇 ‘ 𝑦 ) ) ) = ( ( ( ( 𝑇 ‘ 𝑥 ) ·ih ( 𝑇 ‘ 𝑥 ) ) + ( ( 𝑇 ‘ 𝑦 ) ·ih ( 𝑇 ‘ 𝑦 ) ) ) − ( ( ( 𝑇 ‘ 𝑥 ) ·ih ( 𝑇 ‘ 𝑦 ) ) + ( ( 𝑇 ‘ 𝑦 ) ·ih ( 𝑇 ‘ 𝑥 ) ) ) ) ) |
| 24 | normlem9at | ⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( 𝑥 −ℎ 𝑦 ) ·ih ( 𝑥 −ℎ 𝑦 ) ) = ( ( ( 𝑥 ·ih 𝑥 ) + ( 𝑦 ·ih 𝑦 ) ) − ( ( 𝑥 ·ih 𝑦 ) + ( 𝑦 ·ih 𝑥 ) ) ) ) | |
| 25 | 24 | adantl | ⊢ ( ( 𝑇 ∈ UniOp ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ( 𝑥 −ℎ 𝑦 ) ·ih ( 𝑥 −ℎ 𝑦 ) ) = ( ( ( 𝑥 ·ih 𝑥 ) + ( 𝑦 ·ih 𝑦 ) ) − ( ( 𝑥 ·ih 𝑦 ) + ( 𝑦 ·ih 𝑥 ) ) ) ) |
| 26 | 17 23 25 | 3eqtr4rd | ⊢ ( ( 𝑇 ∈ UniOp ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ( 𝑥 −ℎ 𝑦 ) ·ih ( 𝑥 −ℎ 𝑦 ) ) = ( ( ( 𝑇 ‘ 𝑥 ) −ℎ ( 𝑇 ‘ 𝑦 ) ) ·ih ( ( 𝑇 ‘ 𝑥 ) −ℎ ( 𝑇 ‘ 𝑦 ) ) ) ) |
| 27 | 26 | eqeq1d | ⊢ ( ( 𝑇 ∈ UniOp ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ( ( 𝑥 −ℎ 𝑦 ) ·ih ( 𝑥 −ℎ 𝑦 ) ) = 0 ↔ ( ( ( 𝑇 ‘ 𝑥 ) −ℎ ( 𝑇 ‘ 𝑦 ) ) ·ih ( ( 𝑇 ‘ 𝑥 ) −ℎ ( 𝑇 ‘ 𝑦 ) ) ) = 0 ) ) |
| 28 | hvsubcl | ⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 −ℎ 𝑦 ) ∈ ℋ ) | |
| 29 | his6 | ⊢ ( ( 𝑥 −ℎ 𝑦 ) ∈ ℋ → ( ( ( 𝑥 −ℎ 𝑦 ) ·ih ( 𝑥 −ℎ 𝑦 ) ) = 0 ↔ ( 𝑥 −ℎ 𝑦 ) = 0ℎ ) ) | |
| 30 | 28 29 | syl | ⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( ( 𝑥 −ℎ 𝑦 ) ·ih ( 𝑥 −ℎ 𝑦 ) ) = 0 ↔ ( 𝑥 −ℎ 𝑦 ) = 0ℎ ) ) |
| 31 | hvsubeq0 | ⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( 𝑥 −ℎ 𝑦 ) = 0ℎ ↔ 𝑥 = 𝑦 ) ) | |
| 32 | 30 31 | bitrd | ⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( ( 𝑥 −ℎ 𝑦 ) ·ih ( 𝑥 −ℎ 𝑦 ) ) = 0 ↔ 𝑥 = 𝑦 ) ) |
| 33 | 32 | adantl | ⊢ ( ( 𝑇 ∈ UniOp ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ( ( 𝑥 −ℎ 𝑦 ) ·ih ( 𝑥 −ℎ 𝑦 ) ) = 0 ↔ 𝑥 = 𝑦 ) ) |
| 34 | hvsubcl | ⊢ ( ( ( 𝑇 ‘ 𝑥 ) ∈ ℋ ∧ ( 𝑇 ‘ 𝑦 ) ∈ ℋ ) → ( ( 𝑇 ‘ 𝑥 ) −ℎ ( 𝑇 ‘ 𝑦 ) ) ∈ ℋ ) | |
| 35 | his6 | ⊢ ( ( ( 𝑇 ‘ 𝑥 ) −ℎ ( 𝑇 ‘ 𝑦 ) ) ∈ ℋ → ( ( ( ( 𝑇 ‘ 𝑥 ) −ℎ ( 𝑇 ‘ 𝑦 ) ) ·ih ( ( 𝑇 ‘ 𝑥 ) −ℎ ( 𝑇 ‘ 𝑦 ) ) ) = 0 ↔ ( ( 𝑇 ‘ 𝑥 ) −ℎ ( 𝑇 ‘ 𝑦 ) ) = 0ℎ ) ) | |
| 36 | 34 35 | syl | ⊢ ( ( ( 𝑇 ‘ 𝑥 ) ∈ ℋ ∧ ( 𝑇 ‘ 𝑦 ) ∈ ℋ ) → ( ( ( ( 𝑇 ‘ 𝑥 ) −ℎ ( 𝑇 ‘ 𝑦 ) ) ·ih ( ( 𝑇 ‘ 𝑥 ) −ℎ ( 𝑇 ‘ 𝑦 ) ) ) = 0 ↔ ( ( 𝑇 ‘ 𝑥 ) −ℎ ( 𝑇 ‘ 𝑦 ) ) = 0ℎ ) ) |
| 37 | hvsubeq0 | ⊢ ( ( ( 𝑇 ‘ 𝑥 ) ∈ ℋ ∧ ( 𝑇 ‘ 𝑦 ) ∈ ℋ ) → ( ( ( 𝑇 ‘ 𝑥 ) −ℎ ( 𝑇 ‘ 𝑦 ) ) = 0ℎ ↔ ( 𝑇 ‘ 𝑥 ) = ( 𝑇 ‘ 𝑦 ) ) ) | |
| 38 | 36 37 | bitrd | ⊢ ( ( ( 𝑇 ‘ 𝑥 ) ∈ ℋ ∧ ( 𝑇 ‘ 𝑦 ) ∈ ℋ ) → ( ( ( ( 𝑇 ‘ 𝑥 ) −ℎ ( 𝑇 ‘ 𝑦 ) ) ·ih ( ( 𝑇 ‘ 𝑥 ) −ℎ ( 𝑇 ‘ 𝑦 ) ) ) = 0 ↔ ( 𝑇 ‘ 𝑥 ) = ( 𝑇 ‘ 𝑦 ) ) ) |
| 39 | 21 38 | syl | ⊢ ( ( 𝑇 ∈ UniOp ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ( ( ( 𝑇 ‘ 𝑥 ) −ℎ ( 𝑇 ‘ 𝑦 ) ) ·ih ( ( 𝑇 ‘ 𝑥 ) −ℎ ( 𝑇 ‘ 𝑦 ) ) ) = 0 ↔ ( 𝑇 ‘ 𝑥 ) = ( 𝑇 ‘ 𝑦 ) ) ) |
| 40 | 27 33 39 | 3bitr3rd | ⊢ ( ( 𝑇 ∈ UniOp ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ( 𝑇 ‘ 𝑥 ) = ( 𝑇 ‘ 𝑦 ) ↔ 𝑥 = 𝑦 ) ) |
| 41 | 40 | biimpd | ⊢ ( ( 𝑇 ∈ UniOp ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ( 𝑇 ‘ 𝑥 ) = ( 𝑇 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 42 | 41 | ralrimivva | ⊢ ( 𝑇 ∈ UniOp → ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) = ( 𝑇 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 43 | dff13 | ⊢ ( 𝑇 : ℋ –1-1→ ℋ ↔ ( 𝑇 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) = ( 𝑇 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) | |
| 44 | 4 42 43 | sylanbrc | ⊢ ( 𝑇 ∈ UniOp → 𝑇 : ℋ –1-1→ ℋ ) |
| 45 | df-f1o | ⊢ ( 𝑇 : ℋ –1-1-onto→ ℋ ↔ ( 𝑇 : ℋ –1-1→ ℋ ∧ 𝑇 : ℋ –onto→ ℋ ) ) | |
| 46 | 44 2 45 | sylanbrc | ⊢ ( 𝑇 ∈ UniOp → 𝑇 : ℋ –1-1-onto→ ℋ ) |