This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma used to derive properties of norm. Part of Remark 3.4(B) of Beran p. 98. (Contributed by NM, 10-May-2005) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | normlem9at | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 −ℎ 𝐵 ) ·ih ( 𝐴 −ℎ 𝐵 ) ) = ( ( ( 𝐴 ·ih 𝐴 ) + ( 𝐵 ·ih 𝐵 ) ) − ( ( 𝐴 ·ih 𝐵 ) + ( 𝐵 ·ih 𝐴 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( 𝐴 −ℎ 𝐵 ) = ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ 𝐵 ) ) | |
| 2 | 1 1 | oveq12d | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( ( 𝐴 −ℎ 𝐵 ) ·ih ( 𝐴 −ℎ 𝐵 ) ) = ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ 𝐵 ) ·ih ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ 𝐵 ) ) ) |
| 3 | id | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) | |
| 4 | 3 3 | oveq12d | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( 𝐴 ·ih 𝐴 ) = ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ·ih if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) |
| 5 | 4 | oveq1d | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( ( 𝐴 ·ih 𝐴 ) + ( 𝐵 ·ih 𝐵 ) ) = ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ·ih if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) + ( 𝐵 ·ih 𝐵 ) ) ) |
| 6 | oveq1 | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( 𝐴 ·ih 𝐵 ) = ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ·ih 𝐵 ) ) | |
| 7 | oveq2 | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( 𝐵 ·ih 𝐴 ) = ( 𝐵 ·ih if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) | |
| 8 | 6 7 | oveq12d | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( ( 𝐴 ·ih 𝐵 ) + ( 𝐵 ·ih 𝐴 ) ) = ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ·ih 𝐵 ) + ( 𝐵 ·ih if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) ) |
| 9 | 5 8 | oveq12d | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( ( ( 𝐴 ·ih 𝐴 ) + ( 𝐵 ·ih 𝐵 ) ) − ( ( 𝐴 ·ih 𝐵 ) + ( 𝐵 ·ih 𝐴 ) ) ) = ( ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ·ih if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) + ( 𝐵 ·ih 𝐵 ) ) − ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ·ih 𝐵 ) + ( 𝐵 ·ih if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) ) ) |
| 10 | 2 9 | eqeq12d | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( ( ( 𝐴 −ℎ 𝐵 ) ·ih ( 𝐴 −ℎ 𝐵 ) ) = ( ( ( 𝐴 ·ih 𝐴 ) + ( 𝐵 ·ih 𝐵 ) ) − ( ( 𝐴 ·ih 𝐵 ) + ( 𝐵 ·ih 𝐴 ) ) ) ↔ ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ 𝐵 ) ·ih ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ 𝐵 ) ) = ( ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ·ih if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) + ( 𝐵 ·ih 𝐵 ) ) − ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ·ih 𝐵 ) + ( 𝐵 ·ih if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) ) ) ) |
| 11 | oveq2 | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ 𝐵 ) = ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) | |
| 12 | 11 11 | oveq12d | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ 𝐵 ) ·ih ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ 𝐵 ) ) = ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ·ih ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) ) |
| 13 | id | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) | |
| 14 | 13 13 | oveq12d | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( 𝐵 ·ih 𝐵 ) = ( if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ·ih if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) |
| 15 | 14 | oveq2d | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ·ih if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) + ( 𝐵 ·ih 𝐵 ) ) = ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ·ih if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) + ( if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ·ih if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) ) |
| 16 | oveq2 | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ·ih 𝐵 ) = ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ·ih if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) | |
| 17 | oveq1 | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( 𝐵 ·ih if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) = ( if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ·ih if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) | |
| 18 | 16 17 | oveq12d | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ·ih 𝐵 ) + ( 𝐵 ·ih if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) = ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ·ih if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) + ( if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ·ih if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) ) |
| 19 | 15 18 | oveq12d | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ·ih if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) + ( 𝐵 ·ih 𝐵 ) ) − ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ·ih 𝐵 ) + ( 𝐵 ·ih if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) ) = ( ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ·ih if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) + ( if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ·ih if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) − ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ·ih if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) + ( if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ·ih if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) ) ) |
| 20 | 12 19 | eqeq12d | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ 𝐵 ) ·ih ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ 𝐵 ) ) = ( ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ·ih if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) + ( 𝐵 ·ih 𝐵 ) ) − ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ·ih 𝐵 ) + ( 𝐵 ·ih if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) ) ↔ ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ·ih ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) = ( ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ·ih if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) + ( if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ·ih if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) − ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ·ih if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) + ( if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ·ih if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) ) ) ) |
| 21 | ifhvhv0 | ⊢ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ∈ ℋ | |
| 22 | ifhvhv0 | ⊢ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ∈ ℋ | |
| 23 | 21 22 21 22 | normlem9 | ⊢ ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ·ih ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) = ( ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ·ih if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) + ( if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ·ih if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) − ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ·ih if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) + ( if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ·ih if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) ) |
| 24 | 10 20 23 | dedth2h | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 −ℎ 𝐵 ) ·ih ( 𝐴 −ℎ 𝐵 ) ) = ( ( ( 𝐴 ·ih 𝐴 ) + ( 𝐵 ·ih 𝐵 ) ) − ( ( 𝐴 ·ih 𝐵 ) + ( 𝐵 ·ih 𝐴 ) ) ) ) |