This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property defining a unitary Hilbert space operator. (Contributed by NM, 18-Jan-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elunop | ⊢ ( 𝑇 ∈ UniOp ↔ ( 𝑇 : ℋ –onto→ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih ( 𝑇 ‘ 𝑦 ) ) = ( 𝑥 ·ih 𝑦 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex | ⊢ ( 𝑇 ∈ UniOp → 𝑇 ∈ V ) | |
| 2 | fof | ⊢ ( 𝑇 : ℋ –onto→ ℋ → 𝑇 : ℋ ⟶ ℋ ) | |
| 3 | ax-hilex | ⊢ ℋ ∈ V | |
| 4 | fex | ⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ ℋ ∈ V ) → 𝑇 ∈ V ) | |
| 5 | 2 3 4 | sylancl | ⊢ ( 𝑇 : ℋ –onto→ ℋ → 𝑇 ∈ V ) |
| 6 | 5 | adantr | ⊢ ( ( 𝑇 : ℋ –onto→ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih ( 𝑇 ‘ 𝑦 ) ) = ( 𝑥 ·ih 𝑦 ) ) → 𝑇 ∈ V ) |
| 7 | foeq1 | ⊢ ( 𝑡 = 𝑇 → ( 𝑡 : ℋ –onto→ ℋ ↔ 𝑇 : ℋ –onto→ ℋ ) ) | |
| 8 | fveq1 | ⊢ ( 𝑡 = 𝑇 → ( 𝑡 ‘ 𝑥 ) = ( 𝑇 ‘ 𝑥 ) ) | |
| 9 | fveq1 | ⊢ ( 𝑡 = 𝑇 → ( 𝑡 ‘ 𝑦 ) = ( 𝑇 ‘ 𝑦 ) ) | |
| 10 | 8 9 | oveq12d | ⊢ ( 𝑡 = 𝑇 → ( ( 𝑡 ‘ 𝑥 ) ·ih ( 𝑡 ‘ 𝑦 ) ) = ( ( 𝑇 ‘ 𝑥 ) ·ih ( 𝑇 ‘ 𝑦 ) ) ) |
| 11 | 10 | eqeq1d | ⊢ ( 𝑡 = 𝑇 → ( ( ( 𝑡 ‘ 𝑥 ) ·ih ( 𝑡 ‘ 𝑦 ) ) = ( 𝑥 ·ih 𝑦 ) ↔ ( ( 𝑇 ‘ 𝑥 ) ·ih ( 𝑇 ‘ 𝑦 ) ) = ( 𝑥 ·ih 𝑦 ) ) ) |
| 12 | 11 | 2ralbidv | ⊢ ( 𝑡 = 𝑇 → ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑡 ‘ 𝑥 ) ·ih ( 𝑡 ‘ 𝑦 ) ) = ( 𝑥 ·ih 𝑦 ) ↔ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih ( 𝑇 ‘ 𝑦 ) ) = ( 𝑥 ·ih 𝑦 ) ) ) |
| 13 | 7 12 | anbi12d | ⊢ ( 𝑡 = 𝑇 → ( ( 𝑡 : ℋ –onto→ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑡 ‘ 𝑥 ) ·ih ( 𝑡 ‘ 𝑦 ) ) = ( 𝑥 ·ih 𝑦 ) ) ↔ ( 𝑇 : ℋ –onto→ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih ( 𝑇 ‘ 𝑦 ) ) = ( 𝑥 ·ih 𝑦 ) ) ) ) |
| 14 | df-unop | ⊢ UniOp = { 𝑡 ∣ ( 𝑡 : ℋ –onto→ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑡 ‘ 𝑥 ) ·ih ( 𝑡 ‘ 𝑦 ) ) = ( 𝑥 ·ih 𝑦 ) ) } | |
| 15 | 13 14 | elab2g | ⊢ ( 𝑇 ∈ V → ( 𝑇 ∈ UniOp ↔ ( 𝑇 : ℋ –onto→ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih ( 𝑇 ‘ 𝑦 ) ) = ( 𝑥 ·ih 𝑦 ) ) ) ) |
| 16 | 1 6 15 | pm5.21nii | ⊢ ( 𝑇 ∈ UniOp ↔ ( 𝑇 : ℋ –onto→ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih ( 𝑇 ‘ 𝑦 ) ) = ( 𝑥 ·ih 𝑦 ) ) ) |