This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A unitary operator is idempotent in the norm. (Contributed by NM, 25-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | unopnorm | ⊢ ( ( 𝑇 ∈ UniOp ∧ 𝐴 ∈ ℋ ) → ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) = ( normℎ ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unopf1o | ⊢ ( 𝑇 ∈ UniOp → 𝑇 : ℋ –1-1-onto→ ℋ ) | |
| 2 | f1of | ⊢ ( 𝑇 : ℋ –1-1-onto→ ℋ → 𝑇 : ℋ ⟶ ℋ ) | |
| 3 | 1 2 | syl | ⊢ ( 𝑇 ∈ UniOp → 𝑇 : ℋ ⟶ ℋ ) |
| 4 | 3 | ffvelcdmda | ⊢ ( ( 𝑇 ∈ UniOp ∧ 𝐴 ∈ ℋ ) → ( 𝑇 ‘ 𝐴 ) ∈ ℋ ) |
| 5 | normcl | ⊢ ( ( 𝑇 ‘ 𝐴 ) ∈ ℋ → ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) ∈ ℝ ) | |
| 6 | 4 5 | syl | ⊢ ( ( 𝑇 ∈ UniOp ∧ 𝐴 ∈ ℋ ) → ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) ∈ ℝ ) |
| 7 | normcl | ⊢ ( 𝐴 ∈ ℋ → ( normℎ ‘ 𝐴 ) ∈ ℝ ) | |
| 8 | 7 | adantl | ⊢ ( ( 𝑇 ∈ UniOp ∧ 𝐴 ∈ ℋ ) → ( normℎ ‘ 𝐴 ) ∈ ℝ ) |
| 9 | normge0 | ⊢ ( ( 𝑇 ‘ 𝐴 ) ∈ ℋ → 0 ≤ ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) ) | |
| 10 | 4 9 | syl | ⊢ ( ( 𝑇 ∈ UniOp ∧ 𝐴 ∈ ℋ ) → 0 ≤ ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) ) |
| 11 | normge0 | ⊢ ( 𝐴 ∈ ℋ → 0 ≤ ( normℎ ‘ 𝐴 ) ) | |
| 12 | 11 | adantl | ⊢ ( ( 𝑇 ∈ UniOp ∧ 𝐴 ∈ ℋ ) → 0 ≤ ( normℎ ‘ 𝐴 ) ) |
| 13 | unop | ⊢ ( ( 𝑇 ∈ UniOp ∧ 𝐴 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐴 ) ) = ( 𝐴 ·ih 𝐴 ) ) | |
| 14 | 13 | 3anidm23 | ⊢ ( ( 𝑇 ∈ UniOp ∧ 𝐴 ∈ ℋ ) → ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐴 ) ) = ( 𝐴 ·ih 𝐴 ) ) |
| 15 | normsq | ⊢ ( ( 𝑇 ‘ 𝐴 ) ∈ ℋ → ( ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) ↑ 2 ) = ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐴 ) ) ) | |
| 16 | 4 15 | syl | ⊢ ( ( 𝑇 ∈ UniOp ∧ 𝐴 ∈ ℋ ) → ( ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) ↑ 2 ) = ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐴 ) ) ) |
| 17 | normsq | ⊢ ( 𝐴 ∈ ℋ → ( ( normℎ ‘ 𝐴 ) ↑ 2 ) = ( 𝐴 ·ih 𝐴 ) ) | |
| 18 | 17 | adantl | ⊢ ( ( 𝑇 ∈ UniOp ∧ 𝐴 ∈ ℋ ) → ( ( normℎ ‘ 𝐴 ) ↑ 2 ) = ( 𝐴 ·ih 𝐴 ) ) |
| 19 | 14 16 18 | 3eqtr4d | ⊢ ( ( 𝑇 ∈ UniOp ∧ 𝐴 ∈ ℋ ) → ( ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) ↑ 2 ) = ( ( normℎ ‘ 𝐴 ) ↑ 2 ) ) |
| 20 | 6 8 10 12 19 | sq11d | ⊢ ( ( 𝑇 ∈ UniOp ∧ 𝐴 ∈ ℋ ) → ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) = ( normℎ ‘ 𝐴 ) ) |