This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Basic inner product property of a unitary operator. (Contributed by NM, 22-Jan-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | unop | ⊢ ( ( 𝑇 ∈ UniOp ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) = ( 𝐴 ·ih 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elunop | ⊢ ( 𝑇 ∈ UniOp ↔ ( 𝑇 : ℋ –onto→ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih ( 𝑇 ‘ 𝑦 ) ) = ( 𝑥 ·ih 𝑦 ) ) ) | |
| 2 | 1 | simprbi | ⊢ ( 𝑇 ∈ UniOp → ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih ( 𝑇 ‘ 𝑦 ) ) = ( 𝑥 ·ih 𝑦 ) ) |
| 3 | 2 | 3ad2ant1 | ⊢ ( ( 𝑇 ∈ UniOp ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih ( 𝑇 ‘ 𝑦 ) ) = ( 𝑥 ·ih 𝑦 ) ) |
| 4 | fveq2 | ⊢ ( 𝑥 = 𝐴 → ( 𝑇 ‘ 𝑥 ) = ( 𝑇 ‘ 𝐴 ) ) | |
| 5 | 4 | oveq1d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑇 ‘ 𝑥 ) ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝑦 ) ) ) |
| 6 | oveq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 ·ih 𝑦 ) = ( 𝐴 ·ih 𝑦 ) ) | |
| 7 | 5 6 | eqeq12d | ⊢ ( 𝑥 = 𝐴 → ( ( ( 𝑇 ‘ 𝑥 ) ·ih ( 𝑇 ‘ 𝑦 ) ) = ( 𝑥 ·ih 𝑦 ) ↔ ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝑦 ) ) = ( 𝐴 ·ih 𝑦 ) ) ) |
| 8 | fveq2 | ⊢ ( 𝑦 = 𝐵 → ( 𝑇 ‘ 𝑦 ) = ( 𝑇 ‘ 𝐵 ) ) | |
| 9 | 8 | oveq2d | ⊢ ( 𝑦 = 𝐵 → ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) |
| 10 | oveq2 | ⊢ ( 𝑦 = 𝐵 → ( 𝐴 ·ih 𝑦 ) = ( 𝐴 ·ih 𝐵 ) ) | |
| 11 | 9 10 | eqeq12d | ⊢ ( 𝑦 = 𝐵 → ( ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝑦 ) ) = ( 𝐴 ·ih 𝑦 ) ↔ ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) = ( 𝐴 ·ih 𝐵 ) ) ) |
| 12 | 7 11 | rspc2v | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih ( 𝑇 ‘ 𝑦 ) ) = ( 𝑥 ·ih 𝑦 ) → ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) = ( 𝐴 ·ih 𝐵 ) ) ) |
| 13 | 12 | 3adant1 | ⊢ ( ( 𝑇 ∈ UniOp ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih ( 𝑇 ‘ 𝑦 ) ) = ( 𝑥 ·ih 𝑦 ) → ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) = ( 𝐴 ·ih 𝐵 ) ) ) |
| 14 | 3 13 | mpd | ⊢ ( ( 𝑇 ∈ UniOp ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝑇 ‘ 𝐴 ) ·ih ( 𝑇 ‘ 𝐵 ) ) = ( 𝐴 ·ih 𝐵 ) ) |