This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for rankr1c . (Contributed by NM, 6-Oct-2003) (Revised by Mario Carneiro, 17-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rankr1clem | ⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ dom 𝑅1 ) → ( ¬ 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ↔ 𝐵 ⊆ ( rank ‘ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rankr1ag | ⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ dom 𝑅1 ) → ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ↔ ( rank ‘ 𝐴 ) ∈ 𝐵 ) ) | |
| 2 | 1 | notbid | ⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ dom 𝑅1 ) → ( ¬ 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ↔ ¬ ( rank ‘ 𝐴 ) ∈ 𝐵 ) ) |
| 3 | r1funlim | ⊢ ( Fun 𝑅1 ∧ Lim dom 𝑅1 ) | |
| 4 | 3 | simpri | ⊢ Lim dom 𝑅1 |
| 5 | limord | ⊢ ( Lim dom 𝑅1 → Ord dom 𝑅1 ) | |
| 6 | 4 5 | ax-mp | ⊢ Ord dom 𝑅1 |
| 7 | ordelon | ⊢ ( ( Ord dom 𝑅1 ∧ 𝐵 ∈ dom 𝑅1 ) → 𝐵 ∈ On ) | |
| 8 | 6 7 | mpan | ⊢ ( 𝐵 ∈ dom 𝑅1 → 𝐵 ∈ On ) |
| 9 | 8 | adantl | ⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ dom 𝑅1 ) → 𝐵 ∈ On ) |
| 10 | rankon | ⊢ ( rank ‘ 𝐴 ) ∈ On | |
| 11 | ontri1 | ⊢ ( ( 𝐵 ∈ On ∧ ( rank ‘ 𝐴 ) ∈ On ) → ( 𝐵 ⊆ ( rank ‘ 𝐴 ) ↔ ¬ ( rank ‘ 𝐴 ) ∈ 𝐵 ) ) | |
| 12 | 9 10 11 | sylancl | ⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ dom 𝑅1 ) → ( 𝐵 ⊆ ( rank ‘ 𝐴 ) ↔ ¬ ( rank ‘ 𝐴 ) ∈ 𝐵 ) ) |
| 13 | 2 12 | bitr4d | ⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ dom 𝑅1 ) → ( ¬ 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ↔ 𝐵 ⊆ ( rank ‘ 𝐴 ) ) ) |