This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A union is well-founded iff the base set is. (Contributed by Mario Carneiro, 8-Jun-2013) (Revised by Mario Carneiro, 17-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | uniwf | |- ( A e. U. ( R1 " On ) <-> U. A e. U. ( R1 " On ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r1tr | |- Tr ( R1 ` suc ( rank ` A ) ) |
|
| 2 | rankidb | |- ( A e. U. ( R1 " On ) -> A e. ( R1 ` suc ( rank ` A ) ) ) |
|
| 3 | trss | |- ( Tr ( R1 ` suc ( rank ` A ) ) -> ( A e. ( R1 ` suc ( rank ` A ) ) -> A C_ ( R1 ` suc ( rank ` A ) ) ) ) |
|
| 4 | 1 2 3 | mpsyl | |- ( A e. U. ( R1 " On ) -> A C_ ( R1 ` suc ( rank ` A ) ) ) |
| 5 | rankdmr1 | |- ( rank ` A ) e. dom R1 |
|
| 6 | r1sucg | |- ( ( rank ` A ) e. dom R1 -> ( R1 ` suc ( rank ` A ) ) = ~P ( R1 ` ( rank ` A ) ) ) |
|
| 7 | 5 6 | ax-mp | |- ( R1 ` suc ( rank ` A ) ) = ~P ( R1 ` ( rank ` A ) ) |
| 8 | 4 7 | sseqtrdi | |- ( A e. U. ( R1 " On ) -> A C_ ~P ( R1 ` ( rank ` A ) ) ) |
| 9 | sspwuni | |- ( A C_ ~P ( R1 ` ( rank ` A ) ) <-> U. A C_ ( R1 ` ( rank ` A ) ) ) |
|
| 10 | 8 9 | sylib | |- ( A e. U. ( R1 " On ) -> U. A C_ ( R1 ` ( rank ` A ) ) ) |
| 11 | fvex | |- ( R1 ` ( rank ` A ) ) e. _V |
|
| 12 | 11 | elpw2 | |- ( U. A e. ~P ( R1 ` ( rank ` A ) ) <-> U. A C_ ( R1 ` ( rank ` A ) ) ) |
| 13 | 10 12 | sylibr | |- ( A e. U. ( R1 " On ) -> U. A e. ~P ( R1 ` ( rank ` A ) ) ) |
| 14 | 13 7 | eleqtrrdi | |- ( A e. U. ( R1 " On ) -> U. A e. ( R1 ` suc ( rank ` A ) ) ) |
| 15 | r1elwf | |- ( U. A e. ( R1 ` suc ( rank ` A ) ) -> U. A e. U. ( R1 " On ) ) |
|
| 16 | 14 15 | syl | |- ( A e. U. ( R1 " On ) -> U. A e. U. ( R1 " On ) ) |
| 17 | pwwf | |- ( U. A e. U. ( R1 " On ) <-> ~P U. A e. U. ( R1 " On ) ) |
|
| 18 | pwuni | |- A C_ ~P U. A |
|
| 19 | sswf | |- ( ( ~P U. A e. U. ( R1 " On ) /\ A C_ ~P U. A ) -> A e. U. ( R1 " On ) ) |
|
| 20 | 18 19 | mpan2 | |- ( ~P U. A e. U. ( R1 " On ) -> A e. U. ( R1 " On ) ) |
| 21 | 17 20 | sylbi | |- ( U. A e. U. ( R1 " On ) -> A e. U. ( R1 " On ) ) |
| 22 | 16 21 | impbii | |- ( A e. U. ( R1 " On ) <-> U. A e. U. ( R1 " On ) ) |