This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A power set is well-founded iff the base set is. (Contributed by Mario Carneiro, 8-Jun-2013) (Revised by Mario Carneiro, 16-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pwwf | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ↔ 𝒫 𝐴 ∈ ∪ ( 𝑅1 “ On ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r1rankidb | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → 𝐴 ⊆ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) | |
| 2 | 1 | sspwd | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → 𝒫 𝐴 ⊆ 𝒫 ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) |
| 3 | rankdmr1 | ⊢ ( rank ‘ 𝐴 ) ∈ dom 𝑅1 | |
| 4 | r1sucg | ⊢ ( ( rank ‘ 𝐴 ) ∈ dom 𝑅1 → ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) = 𝒫 ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) | |
| 5 | 3 4 | ax-mp | ⊢ ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) = 𝒫 ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) |
| 6 | 2 5 | sseqtrrdi | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → 𝒫 𝐴 ⊆ ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) ) |
| 7 | fvex | ⊢ ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) ∈ V | |
| 8 | 7 | elpw2 | ⊢ ( 𝒫 𝐴 ∈ 𝒫 ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) ↔ 𝒫 𝐴 ⊆ ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) ) |
| 9 | 6 8 | sylibr | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → 𝒫 𝐴 ∈ 𝒫 ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) ) |
| 10 | r1funlim | ⊢ ( Fun 𝑅1 ∧ Lim dom 𝑅1 ) | |
| 11 | 10 | simpri | ⊢ Lim dom 𝑅1 |
| 12 | limsuc | ⊢ ( Lim dom 𝑅1 → ( ( rank ‘ 𝐴 ) ∈ dom 𝑅1 ↔ suc ( rank ‘ 𝐴 ) ∈ dom 𝑅1 ) ) | |
| 13 | 11 12 | ax-mp | ⊢ ( ( rank ‘ 𝐴 ) ∈ dom 𝑅1 ↔ suc ( rank ‘ 𝐴 ) ∈ dom 𝑅1 ) |
| 14 | 3 13 | mpbi | ⊢ suc ( rank ‘ 𝐴 ) ∈ dom 𝑅1 |
| 15 | r1sucg | ⊢ ( suc ( rank ‘ 𝐴 ) ∈ dom 𝑅1 → ( 𝑅1 ‘ suc suc ( rank ‘ 𝐴 ) ) = 𝒫 ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) ) | |
| 16 | 14 15 | ax-mp | ⊢ ( 𝑅1 ‘ suc suc ( rank ‘ 𝐴 ) ) = 𝒫 ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) |
| 17 | 9 16 | eleqtrrdi | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → 𝒫 𝐴 ∈ ( 𝑅1 ‘ suc suc ( rank ‘ 𝐴 ) ) ) |
| 18 | r1elwf | ⊢ ( 𝒫 𝐴 ∈ ( 𝑅1 ‘ suc suc ( rank ‘ 𝐴 ) ) → 𝒫 𝐴 ∈ ∪ ( 𝑅1 “ On ) ) | |
| 19 | 17 18 | syl | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → 𝒫 𝐴 ∈ ∪ ( 𝑅1 “ On ) ) |
| 20 | r1elssi | ⊢ ( 𝒫 𝐴 ∈ ∪ ( 𝑅1 “ On ) → 𝒫 𝐴 ⊆ ∪ ( 𝑅1 “ On ) ) | |
| 21 | pwexr | ⊢ ( 𝒫 𝐴 ∈ ∪ ( 𝑅1 “ On ) → 𝐴 ∈ V ) | |
| 22 | pwidg | ⊢ ( 𝐴 ∈ V → 𝐴 ∈ 𝒫 𝐴 ) | |
| 23 | 21 22 | syl | ⊢ ( 𝒫 𝐴 ∈ ∪ ( 𝑅1 “ On ) → 𝐴 ∈ 𝒫 𝐴 ) |
| 24 | 20 23 | sseldd | ⊢ ( 𝒫 𝐴 ∈ ∪ ( 𝑅1 “ On ) → 𝐴 ∈ ∪ ( 𝑅1 “ On ) ) |
| 25 | 19 24 | impbii | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ↔ 𝒫 𝐴 ∈ ∪ ( 𝑅1 “ On ) ) |