This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A rank is a member of the cumulative hierarchy. (Contributed by Mario Carneiro, 17-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rankdmr1 | ⊢ ( rank ‘ 𝐴 ) ∈ dom 𝑅1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rankidb | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → 𝐴 ∈ ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) ) | |
| 2 | elfvdm | ⊢ ( 𝐴 ∈ ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) → suc ( rank ‘ 𝐴 ) ∈ dom 𝑅1 ) | |
| 3 | 1 2 | syl | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → suc ( rank ‘ 𝐴 ) ∈ dom 𝑅1 ) |
| 4 | r1funlim | ⊢ ( Fun 𝑅1 ∧ Lim dom 𝑅1 ) | |
| 5 | 4 | simpri | ⊢ Lim dom 𝑅1 |
| 6 | limsuc | ⊢ ( Lim dom 𝑅1 → ( ( rank ‘ 𝐴 ) ∈ dom 𝑅1 ↔ suc ( rank ‘ 𝐴 ) ∈ dom 𝑅1 ) ) | |
| 7 | 5 6 | ax-mp | ⊢ ( ( rank ‘ 𝐴 ) ∈ dom 𝑅1 ↔ suc ( rank ‘ 𝐴 ) ∈ dom 𝑅1 ) |
| 8 | 3 7 | sylibr | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( rank ‘ 𝐴 ) ∈ dom 𝑅1 ) |
| 9 | rankvaln | ⊢ ( ¬ 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( rank ‘ 𝐴 ) = ∅ ) | |
| 10 | limomss | ⊢ ( Lim dom 𝑅1 → ω ⊆ dom 𝑅1 ) | |
| 11 | 5 10 | ax-mp | ⊢ ω ⊆ dom 𝑅1 |
| 12 | peano1 | ⊢ ∅ ∈ ω | |
| 13 | 11 12 | sselii | ⊢ ∅ ∈ dom 𝑅1 |
| 14 | 9 13 | eqeltrdi | ⊢ ( ¬ 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( rank ‘ 𝐴 ) ∈ dom 𝑅1 ) |
| 15 | 8 14 | pm2.61i | ⊢ ( rank ‘ 𝐴 ) ∈ dom 𝑅1 |