This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Reversal of unitmulcl in a commutative ring. (Contributed by Mario Carneiro, 18-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | unitmulcl.1 | ⊢ 𝑈 = ( Unit ‘ 𝑅 ) | |
| unitmulcl.2 | ⊢ · = ( .r ‘ 𝑅 ) | ||
| unitmulclb.1 | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | ||
| Assertion | unitmulclb | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 · 𝑌 ) ∈ 𝑈 ↔ ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unitmulcl.1 | ⊢ 𝑈 = ( Unit ‘ 𝑅 ) | |
| 2 | unitmulcl.2 | ⊢ · = ( .r ‘ 𝑅 ) | |
| 3 | unitmulclb.1 | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 4 | simp1 | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑅 ∈ CRing ) | |
| 5 | simp2 | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) | |
| 6 | simp3 | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑌 ∈ 𝐵 ) | |
| 7 | eqid | ⊢ ( ∥r ‘ 𝑅 ) = ( ∥r ‘ 𝑅 ) | |
| 8 | 3 7 2 | dvdsrmul | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑋 ( ∥r ‘ 𝑅 ) ( 𝑌 · 𝑋 ) ) |
| 9 | 5 6 8 | syl2anc | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑋 ( ∥r ‘ 𝑅 ) ( 𝑌 · 𝑋 ) ) |
| 10 | 3 2 | crngcom | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 · 𝑌 ) = ( 𝑌 · 𝑋 ) ) |
| 11 | 9 10 | breqtrrd | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑋 ( ∥r ‘ 𝑅 ) ( 𝑋 · 𝑌 ) ) |
| 12 | 1 7 | dvdsunit | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ( ∥r ‘ 𝑅 ) ( 𝑋 · 𝑌 ) ∧ ( 𝑋 · 𝑌 ) ∈ 𝑈 ) → 𝑋 ∈ 𝑈 ) |
| 13 | 12 | 3expia | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ( ∥r ‘ 𝑅 ) ( 𝑋 · 𝑌 ) ) → ( ( 𝑋 · 𝑌 ) ∈ 𝑈 → 𝑋 ∈ 𝑈 ) ) |
| 14 | 4 11 13 | syl2anc | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 · 𝑌 ) ∈ 𝑈 → 𝑋 ∈ 𝑈 ) ) |
| 15 | 3 7 2 | dvdsrmul | ⊢ ( ( 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → 𝑌 ( ∥r ‘ 𝑅 ) ( 𝑋 · 𝑌 ) ) |
| 16 | 6 5 15 | syl2anc | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑌 ( ∥r ‘ 𝑅 ) ( 𝑋 · 𝑌 ) ) |
| 17 | 1 7 | dvdsunit | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑌 ( ∥r ‘ 𝑅 ) ( 𝑋 · 𝑌 ) ∧ ( 𝑋 · 𝑌 ) ∈ 𝑈 ) → 𝑌 ∈ 𝑈 ) |
| 18 | 17 | 3expia | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑌 ( ∥r ‘ 𝑅 ) ( 𝑋 · 𝑌 ) ) → ( ( 𝑋 · 𝑌 ) ∈ 𝑈 → 𝑌 ∈ 𝑈 ) ) |
| 19 | 4 16 18 | syl2anc | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 · 𝑌 ) ∈ 𝑈 → 𝑌 ∈ 𝑈 ) ) |
| 20 | 14 19 | jcad | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 · 𝑌 ) ∈ 𝑈 → ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈 ) ) ) |
| 21 | crngring | ⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) | |
| 22 | 21 | 3ad2ant1 | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑅 ∈ Ring ) |
| 23 | 1 2 | unitmulcl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈 ) → ( 𝑋 · 𝑌 ) ∈ 𝑈 ) |
| 24 | 23 | 3expib | ⊢ ( 𝑅 ∈ Ring → ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈 ) → ( 𝑋 · 𝑌 ) ∈ 𝑈 ) ) |
| 25 | 22 24 | syl | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈 ) → ( 𝑋 · 𝑌 ) ∈ 𝑈 ) ) |
| 26 | 20 25 | impbid | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 · 𝑌 ) ∈ 𝑈 ↔ ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈 ) ) ) |