This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The divisibility relation is preserved under right-multiplication. (Contributed by Mario Carneiro, 1-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvdsr.1 | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| dvdsr.2 | ⊢ ∥ = ( ∥r ‘ 𝑅 ) | ||
| dvdsrmul1.3 | ⊢ · = ( .r ‘ 𝑅 ) | ||
| Assertion | dvdsrmul1 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵 ∧ 𝑋 ∥ 𝑌 ) → ( 𝑋 · 𝑍 ) ∥ ( 𝑌 · 𝑍 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdsr.1 | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | dvdsr.2 | ⊢ ∥ = ( ∥r ‘ 𝑅 ) | |
| 3 | dvdsrmul1.3 | ⊢ · = ( .r ‘ 𝑅 ) | |
| 4 | 1 2 3 | dvdsr | ⊢ ( 𝑋 ∥ 𝑌 ↔ ( 𝑋 ∈ 𝐵 ∧ ∃ 𝑥 ∈ 𝐵 ( 𝑥 · 𝑋 ) = 𝑌 ) ) |
| 5 | simplll | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → 𝑅 ∈ Ring ) | |
| 6 | simplr | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) | |
| 7 | simpllr | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → 𝑍 ∈ 𝐵 ) | |
| 8 | 1 3 | ringcl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑋 · 𝑍 ) ∈ 𝐵 ) |
| 9 | 5 6 7 8 | syl3anc | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝑋 · 𝑍 ) ∈ 𝐵 ) |
| 10 | 1 2 3 | dvdsrmul | ⊢ ( ( ( 𝑋 · 𝑍 ) ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑋 · 𝑍 ) ∥ ( 𝑥 · ( 𝑋 · 𝑍 ) ) ) |
| 11 | 9 10 | sylancom | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝑋 · 𝑍 ) ∥ ( 𝑥 · ( 𝑋 · 𝑍 ) ) ) |
| 12 | simpr | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) | |
| 13 | 1 3 | ringass | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑥 · 𝑋 ) · 𝑍 ) = ( 𝑥 · ( 𝑋 · 𝑍 ) ) ) |
| 14 | 5 12 6 7 13 | syl13anc | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → ( ( 𝑥 · 𝑋 ) · 𝑍 ) = ( 𝑥 · ( 𝑋 · 𝑍 ) ) ) |
| 15 | 11 14 | breqtrrd | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝑋 · 𝑍 ) ∥ ( ( 𝑥 · 𝑋 ) · 𝑍 ) ) |
| 16 | oveq1 | ⊢ ( ( 𝑥 · 𝑋 ) = 𝑌 → ( ( 𝑥 · 𝑋 ) · 𝑍 ) = ( 𝑌 · 𝑍 ) ) | |
| 17 | 16 | breq2d | ⊢ ( ( 𝑥 · 𝑋 ) = 𝑌 → ( ( 𝑋 · 𝑍 ) ∥ ( ( 𝑥 · 𝑋 ) · 𝑍 ) ↔ ( 𝑋 · 𝑍 ) ∥ ( 𝑌 · 𝑍 ) ) ) |
| 18 | 15 17 | syl5ibcom | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → ( ( 𝑥 · 𝑋 ) = 𝑌 → ( 𝑋 · 𝑍 ) ∥ ( 𝑌 · 𝑍 ) ) ) |
| 19 | 18 | rexlimdva | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 ∈ 𝐵 ) → ( ∃ 𝑥 ∈ 𝐵 ( 𝑥 · 𝑋 ) = 𝑌 → ( 𝑋 · 𝑍 ) ∥ ( 𝑌 · 𝑍 ) ) ) |
| 20 | 19 | expimpd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵 ) → ( ( 𝑋 ∈ 𝐵 ∧ ∃ 𝑥 ∈ 𝐵 ( 𝑥 · 𝑋 ) = 𝑌 ) → ( 𝑋 · 𝑍 ) ∥ ( 𝑌 · 𝑍 ) ) ) |
| 21 | 4 20 | biimtrid | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵 ) → ( 𝑋 ∥ 𝑌 → ( 𝑋 · 𝑍 ) ∥ ( 𝑌 · 𝑍 ) ) ) |
| 22 | 21 | 3impia | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵 ∧ 𝑋 ∥ 𝑌 ) → ( 𝑋 · 𝑍 ) ∥ ( 𝑌 · 𝑍 ) ) |