This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the union of two functions when the domains are separate. (Contributed by FL, 7-Nov-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fvun | ⊢ ( ( ( Fun 𝐹 ∧ Fun 𝐺 ) ∧ ( dom 𝐹 ∩ dom 𝐺 ) = ∅ ) → ( ( 𝐹 ∪ 𝐺 ) ‘ 𝐴 ) = ( ( 𝐹 ‘ 𝐴 ) ∪ ( 𝐺 ‘ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funun | ⊢ ( ( ( Fun 𝐹 ∧ Fun 𝐺 ) ∧ ( dom 𝐹 ∩ dom 𝐺 ) = ∅ ) → Fun ( 𝐹 ∪ 𝐺 ) ) | |
| 2 | funfv | ⊢ ( Fun ( 𝐹 ∪ 𝐺 ) → ( ( 𝐹 ∪ 𝐺 ) ‘ 𝐴 ) = ∪ ( ( 𝐹 ∪ 𝐺 ) “ { 𝐴 } ) ) | |
| 3 | 1 2 | syl | ⊢ ( ( ( Fun 𝐹 ∧ Fun 𝐺 ) ∧ ( dom 𝐹 ∩ dom 𝐺 ) = ∅ ) → ( ( 𝐹 ∪ 𝐺 ) ‘ 𝐴 ) = ∪ ( ( 𝐹 ∪ 𝐺 ) “ { 𝐴 } ) ) |
| 4 | imaundir | ⊢ ( ( 𝐹 ∪ 𝐺 ) “ { 𝐴 } ) = ( ( 𝐹 “ { 𝐴 } ) ∪ ( 𝐺 “ { 𝐴 } ) ) | |
| 5 | 4 | a1i | ⊢ ( ( ( Fun 𝐹 ∧ Fun 𝐺 ) ∧ ( dom 𝐹 ∩ dom 𝐺 ) = ∅ ) → ( ( 𝐹 ∪ 𝐺 ) “ { 𝐴 } ) = ( ( 𝐹 “ { 𝐴 } ) ∪ ( 𝐺 “ { 𝐴 } ) ) ) |
| 6 | 5 | unieqd | ⊢ ( ( ( Fun 𝐹 ∧ Fun 𝐺 ) ∧ ( dom 𝐹 ∩ dom 𝐺 ) = ∅ ) → ∪ ( ( 𝐹 ∪ 𝐺 ) “ { 𝐴 } ) = ∪ ( ( 𝐹 “ { 𝐴 } ) ∪ ( 𝐺 “ { 𝐴 } ) ) ) |
| 7 | uniun | ⊢ ∪ ( ( 𝐹 “ { 𝐴 } ) ∪ ( 𝐺 “ { 𝐴 } ) ) = ( ∪ ( 𝐹 “ { 𝐴 } ) ∪ ∪ ( 𝐺 “ { 𝐴 } ) ) | |
| 8 | funfv | ⊢ ( Fun 𝐹 → ( 𝐹 ‘ 𝐴 ) = ∪ ( 𝐹 “ { 𝐴 } ) ) | |
| 9 | 8 | eqcomd | ⊢ ( Fun 𝐹 → ∪ ( 𝐹 “ { 𝐴 } ) = ( 𝐹 ‘ 𝐴 ) ) |
| 10 | funfv | ⊢ ( Fun 𝐺 → ( 𝐺 ‘ 𝐴 ) = ∪ ( 𝐺 “ { 𝐴 } ) ) | |
| 11 | 10 | eqcomd | ⊢ ( Fun 𝐺 → ∪ ( 𝐺 “ { 𝐴 } ) = ( 𝐺 ‘ 𝐴 ) ) |
| 12 | 9 11 | anim12i | ⊢ ( ( Fun 𝐹 ∧ Fun 𝐺 ) → ( ∪ ( 𝐹 “ { 𝐴 } ) = ( 𝐹 ‘ 𝐴 ) ∧ ∪ ( 𝐺 “ { 𝐴 } ) = ( 𝐺 ‘ 𝐴 ) ) ) |
| 13 | 12 | adantr | ⊢ ( ( ( Fun 𝐹 ∧ Fun 𝐺 ) ∧ ( dom 𝐹 ∩ dom 𝐺 ) = ∅ ) → ( ∪ ( 𝐹 “ { 𝐴 } ) = ( 𝐹 ‘ 𝐴 ) ∧ ∪ ( 𝐺 “ { 𝐴 } ) = ( 𝐺 ‘ 𝐴 ) ) ) |
| 14 | uneq12 | ⊢ ( ( ∪ ( 𝐹 “ { 𝐴 } ) = ( 𝐹 ‘ 𝐴 ) ∧ ∪ ( 𝐺 “ { 𝐴 } ) = ( 𝐺 ‘ 𝐴 ) ) → ( ∪ ( 𝐹 “ { 𝐴 } ) ∪ ∪ ( 𝐺 “ { 𝐴 } ) ) = ( ( 𝐹 ‘ 𝐴 ) ∪ ( 𝐺 ‘ 𝐴 ) ) ) | |
| 15 | 13 14 | syl | ⊢ ( ( ( Fun 𝐹 ∧ Fun 𝐺 ) ∧ ( dom 𝐹 ∩ dom 𝐺 ) = ∅ ) → ( ∪ ( 𝐹 “ { 𝐴 } ) ∪ ∪ ( 𝐺 “ { 𝐴 } ) ) = ( ( 𝐹 ‘ 𝐴 ) ∪ ( 𝐺 ‘ 𝐴 ) ) ) |
| 16 | 7 15 | eqtrid | ⊢ ( ( ( Fun 𝐹 ∧ Fun 𝐺 ) ∧ ( dom 𝐹 ∩ dom 𝐺 ) = ∅ ) → ∪ ( ( 𝐹 “ { 𝐴 } ) ∪ ( 𝐺 “ { 𝐴 } ) ) = ( ( 𝐹 ‘ 𝐴 ) ∪ ( 𝐺 ‘ 𝐴 ) ) ) |
| 17 | 3 6 16 | 3eqtrd | ⊢ ( ( ( Fun 𝐹 ∧ Fun 𝐺 ) ∧ ( dom 𝐹 ∩ dom 𝐺 ) = ∅ ) → ( ( 𝐹 ∪ 𝐺 ) ‘ 𝐴 ) = ( ( 𝐹 ‘ 𝐴 ) ∪ ( 𝐺 ‘ 𝐴 ) ) ) |