This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Uniform continuity implies continuity. Deduction form. Proposition 1 of BourbakiTop1 p. II.6. (Contributed by Thierry Arnoux, 30-Nov-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ucncn.j | ⊢ 𝐽 = ( TopOpen ‘ 𝑅 ) | |
| ucncn.k | ⊢ 𝐾 = ( TopOpen ‘ 𝑆 ) | ||
| ucncn.1 | ⊢ ( 𝜑 → 𝑅 ∈ UnifSp ) | ||
| ucncn.2 | ⊢ ( 𝜑 → 𝑆 ∈ UnifSp ) | ||
| ucncn.3 | ⊢ ( 𝜑 → 𝑅 ∈ TopSp ) | ||
| ucncn.4 | ⊢ ( 𝜑 → 𝑆 ∈ TopSp ) | ||
| ucncn.5 | ⊢ ( 𝜑 → 𝐹 ∈ ( ( UnifSt ‘ 𝑅 ) Cnu ( UnifSt ‘ 𝑆 ) ) ) | ||
| Assertion | ucncn | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ucncn.j | ⊢ 𝐽 = ( TopOpen ‘ 𝑅 ) | |
| 2 | ucncn.k | ⊢ 𝐾 = ( TopOpen ‘ 𝑆 ) | |
| 3 | ucncn.1 | ⊢ ( 𝜑 → 𝑅 ∈ UnifSp ) | |
| 4 | ucncn.2 | ⊢ ( 𝜑 → 𝑆 ∈ UnifSp ) | |
| 5 | ucncn.3 | ⊢ ( 𝜑 → 𝑅 ∈ TopSp ) | |
| 6 | ucncn.4 | ⊢ ( 𝜑 → 𝑆 ∈ TopSp ) | |
| 7 | ucncn.5 | ⊢ ( 𝜑 → 𝐹 ∈ ( ( UnifSt ‘ 𝑅 ) Cnu ( UnifSt ‘ 𝑆 ) ) ) | |
| 8 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 9 | eqid | ⊢ ( UnifSt ‘ 𝑅 ) = ( UnifSt ‘ 𝑅 ) | |
| 10 | 8 9 1 | isusp | ⊢ ( 𝑅 ∈ UnifSp ↔ ( ( UnifSt ‘ 𝑅 ) ∈ ( UnifOn ‘ ( Base ‘ 𝑅 ) ) ∧ 𝐽 = ( unifTop ‘ ( UnifSt ‘ 𝑅 ) ) ) ) |
| 11 | 10 | simplbi | ⊢ ( 𝑅 ∈ UnifSp → ( UnifSt ‘ 𝑅 ) ∈ ( UnifOn ‘ ( Base ‘ 𝑅 ) ) ) |
| 12 | 3 11 | syl | ⊢ ( 𝜑 → ( UnifSt ‘ 𝑅 ) ∈ ( UnifOn ‘ ( Base ‘ 𝑅 ) ) ) |
| 13 | eqid | ⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) | |
| 14 | eqid | ⊢ ( UnifSt ‘ 𝑆 ) = ( UnifSt ‘ 𝑆 ) | |
| 15 | 13 14 2 | isusp | ⊢ ( 𝑆 ∈ UnifSp ↔ ( ( UnifSt ‘ 𝑆 ) ∈ ( UnifOn ‘ ( Base ‘ 𝑆 ) ) ∧ 𝐾 = ( unifTop ‘ ( UnifSt ‘ 𝑆 ) ) ) ) |
| 16 | 15 | simplbi | ⊢ ( 𝑆 ∈ UnifSp → ( UnifSt ‘ 𝑆 ) ∈ ( UnifOn ‘ ( Base ‘ 𝑆 ) ) ) |
| 17 | 4 16 | syl | ⊢ ( 𝜑 → ( UnifSt ‘ 𝑆 ) ∈ ( UnifOn ‘ ( Base ‘ 𝑆 ) ) ) |
| 18 | isucn | ⊢ ( ( ( UnifSt ‘ 𝑅 ) ∈ ( UnifOn ‘ ( Base ‘ 𝑅 ) ) ∧ ( UnifSt ‘ 𝑆 ) ∈ ( UnifOn ‘ ( Base ‘ 𝑆 ) ) ) → ( 𝐹 ∈ ( ( UnifSt ‘ 𝑅 ) Cnu ( UnifSt ‘ 𝑆 ) ) ↔ ( 𝐹 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 ) ∧ ∀ 𝑠 ∈ ( UnifSt ‘ 𝑆 ) ∃ 𝑟 ∈ ( UnifSt ‘ 𝑅 ) ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( 𝑥 𝑟 𝑧 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑧 ) ) ) ) ) | |
| 19 | 12 17 18 | syl2anc | ⊢ ( 𝜑 → ( 𝐹 ∈ ( ( UnifSt ‘ 𝑅 ) Cnu ( UnifSt ‘ 𝑆 ) ) ↔ ( 𝐹 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 ) ∧ ∀ 𝑠 ∈ ( UnifSt ‘ 𝑆 ) ∃ 𝑟 ∈ ( UnifSt ‘ 𝑅 ) ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( 𝑥 𝑟 𝑧 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑧 ) ) ) ) ) |
| 20 | 7 19 | mpbid | ⊢ ( 𝜑 → ( 𝐹 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 ) ∧ ∀ 𝑠 ∈ ( UnifSt ‘ 𝑆 ) ∃ 𝑟 ∈ ( UnifSt ‘ 𝑅 ) ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( 𝑥 𝑟 𝑧 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 21 | 20 | simpld | ⊢ ( 𝜑 → 𝐹 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 ) ) |
| 22 | cnvimass | ⊢ ( ◡ 𝐹 “ 𝑎 ) ⊆ dom 𝐹 | |
| 23 | 21 | fdmd | ⊢ ( 𝜑 → dom 𝐹 = ( Base ‘ 𝑅 ) ) |
| 24 | 23 | adantr | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) → dom 𝐹 = ( Base ‘ 𝑅 ) ) |
| 25 | 22 24 | sseqtrid | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) → ( ◡ 𝐹 “ 𝑎 ) ⊆ ( Base ‘ 𝑅 ) ) |
| 26 | simplll | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ∧ 𝑠 ∈ ( UnifSt ‘ 𝑆 ) ) → 𝜑 ) | |
| 27 | simpr | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ∧ 𝑠 ∈ ( UnifSt ‘ 𝑆 ) ) → 𝑠 ∈ ( UnifSt ‘ 𝑆 ) ) | |
| 28 | 25 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ∧ 𝑠 ∈ ( UnifSt ‘ 𝑆 ) ) → ( ◡ 𝐹 “ 𝑎 ) ⊆ ( Base ‘ 𝑅 ) ) |
| 29 | simplr | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ∧ 𝑠 ∈ ( UnifSt ‘ 𝑆 ) ) → 𝑥 ∈ ( ◡ 𝐹 “ 𝑎 ) ) | |
| 30 | 28 29 | sseldd | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ∧ 𝑠 ∈ ( UnifSt ‘ 𝑆 ) ) → 𝑥 ∈ ( Base ‘ 𝑅 ) ) |
| 31 | 20 | simprd | ⊢ ( 𝜑 → ∀ 𝑠 ∈ ( UnifSt ‘ 𝑆 ) ∃ 𝑟 ∈ ( UnifSt ‘ 𝑅 ) ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( 𝑥 𝑟 𝑧 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑧 ) ) ) |
| 32 | 31 | r19.21bi | ⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( UnifSt ‘ 𝑆 ) ) → ∃ 𝑟 ∈ ( UnifSt ‘ 𝑅 ) ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( 𝑥 𝑟 𝑧 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑧 ) ) ) |
| 33 | r19.12 | ⊢ ( ∃ 𝑟 ∈ ( UnifSt ‘ 𝑅 ) ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( 𝑥 𝑟 𝑧 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑧 ) ) → ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∃ 𝑟 ∈ ( UnifSt ‘ 𝑅 ) ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( 𝑥 𝑟 𝑧 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑧 ) ) ) | |
| 34 | 32 33 | syl | ⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( UnifSt ‘ 𝑆 ) ) → ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∃ 𝑟 ∈ ( UnifSt ‘ 𝑅 ) ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( 𝑥 𝑟 𝑧 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑧 ) ) ) |
| 35 | 34 | r19.21bi | ⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( UnifSt ‘ 𝑆 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ∃ 𝑟 ∈ ( UnifSt ‘ 𝑅 ) ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( 𝑥 𝑟 𝑧 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑧 ) ) ) |
| 36 | 26 27 30 35 | syl21anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ∧ 𝑠 ∈ ( UnifSt ‘ 𝑆 ) ) → ∃ 𝑟 ∈ ( UnifSt ‘ 𝑅 ) ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( 𝑥 𝑟 𝑧 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑧 ) ) ) |
| 37 | 36 | adantr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ∧ 𝑠 ∈ ( UnifSt ‘ 𝑆 ) ) ∧ ( 𝑠 “ { ( 𝐹 ‘ 𝑥 ) } ) ⊆ 𝑎 ) → ∃ 𝑟 ∈ ( UnifSt ‘ 𝑅 ) ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( 𝑥 𝑟 𝑧 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑧 ) ) ) |
| 38 | 26 | ad3antrrr | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ∧ 𝑠 ∈ ( UnifSt ‘ 𝑆 ) ) ∧ ( 𝑠 “ { ( 𝐹 ‘ 𝑥 ) } ) ⊆ 𝑎 ) ∧ 𝑟 ∈ ( UnifSt ‘ 𝑅 ) ) ∧ ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( 𝑥 𝑟 𝑧 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑧 ) ) ) → 𝜑 ) |
| 39 | 12 | ad5antr | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ∧ 𝑠 ∈ ( UnifSt ‘ 𝑆 ) ) ∧ ( 𝑠 “ { ( 𝐹 ‘ 𝑥 ) } ) ⊆ 𝑎 ) ∧ 𝑟 ∈ ( UnifSt ‘ 𝑅 ) ) → ( UnifSt ‘ 𝑅 ) ∈ ( UnifOn ‘ ( Base ‘ 𝑅 ) ) ) |
| 40 | simpr | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ∧ 𝑠 ∈ ( UnifSt ‘ 𝑆 ) ) ∧ ( 𝑠 “ { ( 𝐹 ‘ 𝑥 ) } ) ⊆ 𝑎 ) ∧ 𝑟 ∈ ( UnifSt ‘ 𝑅 ) ) → 𝑟 ∈ ( UnifSt ‘ 𝑅 ) ) | |
| 41 | ustrel | ⊢ ( ( ( UnifSt ‘ 𝑅 ) ∈ ( UnifOn ‘ ( Base ‘ 𝑅 ) ) ∧ 𝑟 ∈ ( UnifSt ‘ 𝑅 ) ) → Rel 𝑟 ) | |
| 42 | 39 40 41 | syl2anc | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ∧ 𝑠 ∈ ( UnifSt ‘ 𝑆 ) ) ∧ ( 𝑠 “ { ( 𝐹 ‘ 𝑥 ) } ) ⊆ 𝑎 ) ∧ 𝑟 ∈ ( UnifSt ‘ 𝑅 ) ) → Rel 𝑟 ) |
| 43 | 42 | adantr | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ∧ 𝑠 ∈ ( UnifSt ‘ 𝑆 ) ) ∧ ( 𝑠 “ { ( 𝐹 ‘ 𝑥 ) } ) ⊆ 𝑎 ) ∧ 𝑟 ∈ ( UnifSt ‘ 𝑅 ) ) ∧ ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( 𝑥 𝑟 𝑧 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑧 ) ) ) → Rel 𝑟 ) |
| 44 | 38 12 | syl | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ∧ 𝑠 ∈ ( UnifSt ‘ 𝑆 ) ) ∧ ( 𝑠 “ { ( 𝐹 ‘ 𝑥 ) } ) ⊆ 𝑎 ) ∧ 𝑟 ∈ ( UnifSt ‘ 𝑅 ) ) ∧ ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( 𝑥 𝑟 𝑧 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑧 ) ) ) → ( UnifSt ‘ 𝑅 ) ∈ ( UnifOn ‘ ( Base ‘ 𝑅 ) ) ) |
| 45 | simplr | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ∧ 𝑠 ∈ ( UnifSt ‘ 𝑆 ) ) ∧ ( 𝑠 “ { ( 𝐹 ‘ 𝑥 ) } ) ⊆ 𝑎 ) ∧ 𝑟 ∈ ( UnifSt ‘ 𝑅 ) ) ∧ ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( 𝑥 𝑟 𝑧 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑧 ) ) ) → 𝑟 ∈ ( UnifSt ‘ 𝑅 ) ) | |
| 46 | 30 | ad3antrrr | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ∧ 𝑠 ∈ ( UnifSt ‘ 𝑆 ) ) ∧ ( 𝑠 “ { ( 𝐹 ‘ 𝑥 ) } ) ⊆ 𝑎 ) ∧ 𝑟 ∈ ( UnifSt ‘ 𝑅 ) ) ∧ ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( 𝑥 𝑟 𝑧 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑧 ) ) ) → 𝑥 ∈ ( Base ‘ 𝑅 ) ) |
| 47 | ustimasn | ⊢ ( ( ( UnifSt ‘ 𝑅 ) ∈ ( UnifOn ‘ ( Base ‘ 𝑅 ) ) ∧ 𝑟 ∈ ( UnifSt ‘ 𝑅 ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑟 “ { 𝑥 } ) ⊆ ( Base ‘ 𝑅 ) ) | |
| 48 | 44 45 46 47 | syl3anc | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ∧ 𝑠 ∈ ( UnifSt ‘ 𝑆 ) ) ∧ ( 𝑠 “ { ( 𝐹 ‘ 𝑥 ) } ) ⊆ 𝑎 ) ∧ 𝑟 ∈ ( UnifSt ‘ 𝑅 ) ) ∧ ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( 𝑥 𝑟 𝑧 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑧 ) ) ) → ( 𝑟 “ { 𝑥 } ) ⊆ ( Base ‘ 𝑅 ) ) |
| 49 | simpr | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ∧ 𝑠 ∈ ( UnifSt ‘ 𝑆 ) ) ∧ ( 𝑠 “ { ( 𝐹 ‘ 𝑥 ) } ) ⊆ 𝑎 ) ∧ 𝑟 ∈ ( UnifSt ‘ 𝑅 ) ) ∧ ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( 𝑥 𝑟 𝑧 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑧 ) ) ) → ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( 𝑥 𝑟 𝑧 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑧 ) ) ) | |
| 50 | simplr | ⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ∧ 𝑠 ∈ ( UnifSt ‘ 𝑆 ) ) ∧ ( 𝑠 “ { ( 𝐹 ‘ 𝑥 ) } ) ⊆ 𝑎 ) ∧ 𝑟 ∈ ( UnifSt ‘ 𝑅 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑧 ) ) → 𝑧 ∈ ( Base ‘ 𝑅 ) ) | |
| 51 | simpllr | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ∧ 𝑠 ∈ ( UnifSt ‘ 𝑆 ) ) ∧ ( 𝑠 “ { ( 𝐹 ‘ 𝑥 ) } ) ⊆ 𝑎 ) ∧ 𝑟 ∈ ( UnifSt ‘ 𝑅 ) ) ∧ ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑧 ) ) → ( 𝑠 “ { ( 𝐹 ‘ 𝑥 ) } ) ⊆ 𝑎 ) | |
| 52 | 17 | ad5antr | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ∧ 𝑠 ∈ ( UnifSt ‘ 𝑆 ) ) ∧ ( 𝑠 “ { ( 𝐹 ‘ 𝑥 ) } ) ⊆ 𝑎 ) ∧ 𝑟 ∈ ( UnifSt ‘ 𝑅 ) ) → ( UnifSt ‘ 𝑆 ) ∈ ( UnifOn ‘ ( Base ‘ 𝑆 ) ) ) |
| 53 | simpllr | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ∧ 𝑠 ∈ ( UnifSt ‘ 𝑆 ) ) ∧ ( 𝑠 “ { ( 𝐹 ‘ 𝑥 ) } ) ⊆ 𝑎 ) ∧ 𝑟 ∈ ( UnifSt ‘ 𝑅 ) ) → 𝑠 ∈ ( UnifSt ‘ 𝑆 ) ) | |
| 54 | ustrel | ⊢ ( ( ( UnifSt ‘ 𝑆 ) ∈ ( UnifOn ‘ ( Base ‘ 𝑆 ) ) ∧ 𝑠 ∈ ( UnifSt ‘ 𝑆 ) ) → Rel 𝑠 ) | |
| 55 | 52 53 54 | syl2anc | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ∧ 𝑠 ∈ ( UnifSt ‘ 𝑆 ) ) ∧ ( 𝑠 “ { ( 𝐹 ‘ 𝑥 ) } ) ⊆ 𝑎 ) ∧ 𝑟 ∈ ( UnifSt ‘ 𝑅 ) ) → Rel 𝑠 ) |
| 56 | elrelimasn | ⊢ ( Rel 𝑠 → ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝑠 “ { ( 𝐹 ‘ 𝑥 ) } ) ↔ ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑧 ) ) ) | |
| 57 | 55 56 | syl | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ∧ 𝑠 ∈ ( UnifSt ‘ 𝑆 ) ) ∧ ( 𝑠 “ { ( 𝐹 ‘ 𝑥 ) } ) ⊆ 𝑎 ) ∧ 𝑟 ∈ ( UnifSt ‘ 𝑅 ) ) → ( ( 𝐹 ‘ 𝑧 ) ∈ ( 𝑠 “ { ( 𝐹 ‘ 𝑥 ) } ) ↔ ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑧 ) ) ) |
| 58 | 57 | biimpar | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ∧ 𝑠 ∈ ( UnifSt ‘ 𝑆 ) ) ∧ ( 𝑠 “ { ( 𝐹 ‘ 𝑥 ) } ) ⊆ 𝑎 ) ∧ 𝑟 ∈ ( UnifSt ‘ 𝑅 ) ) ∧ ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑧 ) ) → ( 𝐹 ‘ 𝑧 ) ∈ ( 𝑠 “ { ( 𝐹 ‘ 𝑥 ) } ) ) |
| 59 | 51 58 | sseldd | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ∧ 𝑠 ∈ ( UnifSt ‘ 𝑆 ) ) ∧ ( 𝑠 “ { ( 𝐹 ‘ 𝑥 ) } ) ⊆ 𝑎 ) ∧ 𝑟 ∈ ( UnifSt ‘ 𝑅 ) ) ∧ ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑧 ) ) → ( 𝐹 ‘ 𝑧 ) ∈ 𝑎 ) |
| 60 | 59 | adantlr | ⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ∧ 𝑠 ∈ ( UnifSt ‘ 𝑆 ) ) ∧ ( 𝑠 “ { ( 𝐹 ‘ 𝑥 ) } ) ⊆ 𝑎 ) ∧ 𝑟 ∈ ( UnifSt ‘ 𝑅 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑧 ) ) → ( 𝐹 ‘ 𝑧 ) ∈ 𝑎 ) |
| 61 | ffn | ⊢ ( 𝐹 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 ) → 𝐹 Fn ( Base ‘ 𝑅 ) ) | |
| 62 | elpreima | ⊢ ( 𝐹 Fn ( Base ‘ 𝑅 ) → ( 𝑧 ∈ ( ◡ 𝐹 “ 𝑎 ) ↔ ( 𝑧 ∈ ( Base ‘ 𝑅 ) ∧ ( 𝐹 ‘ 𝑧 ) ∈ 𝑎 ) ) ) | |
| 63 | 21 61 62 | 3syl | ⊢ ( 𝜑 → ( 𝑧 ∈ ( ◡ 𝐹 “ 𝑎 ) ↔ ( 𝑧 ∈ ( Base ‘ 𝑅 ) ∧ ( 𝐹 ‘ 𝑧 ) ∈ 𝑎 ) ) ) |
| 64 | 63 | ad7antr | ⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ∧ 𝑠 ∈ ( UnifSt ‘ 𝑆 ) ) ∧ ( 𝑠 “ { ( 𝐹 ‘ 𝑥 ) } ) ⊆ 𝑎 ) ∧ 𝑟 ∈ ( UnifSt ‘ 𝑅 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑧 ) ) → ( 𝑧 ∈ ( ◡ 𝐹 “ 𝑎 ) ↔ ( 𝑧 ∈ ( Base ‘ 𝑅 ) ∧ ( 𝐹 ‘ 𝑧 ) ∈ 𝑎 ) ) ) |
| 65 | 50 60 64 | mpbir2and | ⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ∧ 𝑠 ∈ ( UnifSt ‘ 𝑆 ) ) ∧ ( 𝑠 “ { ( 𝐹 ‘ 𝑥 ) } ) ⊆ 𝑎 ) ∧ 𝑟 ∈ ( UnifSt ‘ 𝑅 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑧 ) ) → 𝑧 ∈ ( ◡ 𝐹 “ 𝑎 ) ) |
| 66 | 65 | ex | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ∧ 𝑠 ∈ ( UnifSt ‘ 𝑆 ) ) ∧ ( 𝑠 “ { ( 𝐹 ‘ 𝑥 ) } ) ⊆ 𝑎 ) ∧ 𝑟 ∈ ( UnifSt ‘ 𝑅 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑧 ) → 𝑧 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ) |
| 67 | 66 | ralrimiva | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ∧ 𝑠 ∈ ( UnifSt ‘ 𝑆 ) ) ∧ ( 𝑠 “ { ( 𝐹 ‘ 𝑥 ) } ) ⊆ 𝑎 ) ∧ 𝑟 ∈ ( UnifSt ‘ 𝑅 ) ) → ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑧 ) → 𝑧 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ) |
| 68 | 67 | adantr | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ∧ 𝑠 ∈ ( UnifSt ‘ 𝑆 ) ) ∧ ( 𝑠 “ { ( 𝐹 ‘ 𝑥 ) } ) ⊆ 𝑎 ) ∧ 𝑟 ∈ ( UnifSt ‘ 𝑅 ) ) ∧ ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( 𝑥 𝑟 𝑧 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑧 ) ) ) → ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑧 ) → 𝑧 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ) |
| 69 | r19.26 | ⊢ ( ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( ( 𝑥 𝑟 𝑧 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑧 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑧 ) → 𝑧 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ) ↔ ( ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( 𝑥 𝑟 𝑧 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑧 ) ) ∧ ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑧 ) → 𝑧 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ) ) | |
| 70 | pm3.33 | ⊢ ( ( ( 𝑥 𝑟 𝑧 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑧 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑧 ) → 𝑧 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ) → ( 𝑥 𝑟 𝑧 → 𝑧 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ) | |
| 71 | 70 | ralimi | ⊢ ( ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( ( 𝑥 𝑟 𝑧 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑧 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑧 ) → 𝑧 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ) → ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( 𝑥 𝑟 𝑧 → 𝑧 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ) |
| 72 | 69 71 | sylbir | ⊢ ( ( ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( 𝑥 𝑟 𝑧 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑧 ) ) ∧ ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑧 ) → 𝑧 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ) → ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( 𝑥 𝑟 𝑧 → 𝑧 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ) |
| 73 | 49 68 72 | syl2anc | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ∧ 𝑠 ∈ ( UnifSt ‘ 𝑆 ) ) ∧ ( 𝑠 “ { ( 𝐹 ‘ 𝑥 ) } ) ⊆ 𝑎 ) ∧ 𝑟 ∈ ( UnifSt ‘ 𝑅 ) ) ∧ ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( 𝑥 𝑟 𝑧 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑧 ) ) ) → ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( 𝑥 𝑟 𝑧 → 𝑧 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ) |
| 74 | simpl2l | ⊢ ( ( ( 𝜑 ∧ ( Rel 𝑟 ∧ ( 𝑟 “ { 𝑥 } ) ⊆ ( Base ‘ 𝑅 ) ) ∧ ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( 𝑥 𝑟 𝑧 → 𝑧 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ) ∧ 𝑦 ∈ ( 𝑟 “ { 𝑥 } ) ) → Rel 𝑟 ) | |
| 75 | simpr | ⊢ ( ( ( 𝜑 ∧ ( Rel 𝑟 ∧ ( 𝑟 “ { 𝑥 } ) ⊆ ( Base ‘ 𝑅 ) ) ∧ ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( 𝑥 𝑟 𝑧 → 𝑧 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ) ∧ 𝑦 ∈ ( 𝑟 “ { 𝑥 } ) ) → 𝑦 ∈ ( 𝑟 “ { 𝑥 } ) ) | |
| 76 | elrelimasn | ⊢ ( Rel 𝑟 → ( 𝑦 ∈ ( 𝑟 “ { 𝑥 } ) ↔ 𝑥 𝑟 𝑦 ) ) | |
| 77 | 76 | biimpa | ⊢ ( ( Rel 𝑟 ∧ 𝑦 ∈ ( 𝑟 “ { 𝑥 } ) ) → 𝑥 𝑟 𝑦 ) |
| 78 | 74 75 77 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( Rel 𝑟 ∧ ( 𝑟 “ { 𝑥 } ) ⊆ ( Base ‘ 𝑅 ) ) ∧ ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( 𝑥 𝑟 𝑧 → 𝑧 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ) ∧ 𝑦 ∈ ( 𝑟 “ { 𝑥 } ) ) → 𝑥 𝑟 𝑦 ) |
| 79 | breq2 | ⊢ ( 𝑧 = 𝑦 → ( 𝑥 𝑟 𝑧 ↔ 𝑥 𝑟 𝑦 ) ) | |
| 80 | eleq1w | ⊢ ( 𝑧 = 𝑦 → ( 𝑧 ∈ ( ◡ 𝐹 “ 𝑎 ) ↔ 𝑦 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ) | |
| 81 | 79 80 | imbi12d | ⊢ ( 𝑧 = 𝑦 → ( ( 𝑥 𝑟 𝑧 → 𝑧 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ↔ ( 𝑥 𝑟 𝑦 → 𝑦 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ) ) |
| 82 | simpl3 | ⊢ ( ( ( 𝜑 ∧ ( Rel 𝑟 ∧ ( 𝑟 “ { 𝑥 } ) ⊆ ( Base ‘ 𝑅 ) ) ∧ ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( 𝑥 𝑟 𝑧 → 𝑧 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ) ∧ 𝑦 ∈ ( 𝑟 “ { 𝑥 } ) ) → ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( 𝑥 𝑟 𝑧 → 𝑧 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ) | |
| 83 | simpl2r | ⊢ ( ( ( 𝜑 ∧ ( Rel 𝑟 ∧ ( 𝑟 “ { 𝑥 } ) ⊆ ( Base ‘ 𝑅 ) ) ∧ ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( 𝑥 𝑟 𝑧 → 𝑧 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ) ∧ 𝑦 ∈ ( 𝑟 “ { 𝑥 } ) ) → ( 𝑟 “ { 𝑥 } ) ⊆ ( Base ‘ 𝑅 ) ) | |
| 84 | 83 75 | sseldd | ⊢ ( ( ( 𝜑 ∧ ( Rel 𝑟 ∧ ( 𝑟 “ { 𝑥 } ) ⊆ ( Base ‘ 𝑅 ) ) ∧ ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( 𝑥 𝑟 𝑧 → 𝑧 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ) ∧ 𝑦 ∈ ( 𝑟 “ { 𝑥 } ) ) → 𝑦 ∈ ( Base ‘ 𝑅 ) ) |
| 85 | 81 82 84 | rspcdva | ⊢ ( ( ( 𝜑 ∧ ( Rel 𝑟 ∧ ( 𝑟 “ { 𝑥 } ) ⊆ ( Base ‘ 𝑅 ) ) ∧ ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( 𝑥 𝑟 𝑧 → 𝑧 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ) ∧ 𝑦 ∈ ( 𝑟 “ { 𝑥 } ) ) → ( 𝑥 𝑟 𝑦 → 𝑦 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ) |
| 86 | 78 85 | mpd | ⊢ ( ( ( 𝜑 ∧ ( Rel 𝑟 ∧ ( 𝑟 “ { 𝑥 } ) ⊆ ( Base ‘ 𝑅 ) ) ∧ ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( 𝑥 𝑟 𝑧 → 𝑧 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ) ∧ 𝑦 ∈ ( 𝑟 “ { 𝑥 } ) ) → 𝑦 ∈ ( ◡ 𝐹 “ 𝑎 ) ) |
| 87 | 86 | ex | ⊢ ( ( 𝜑 ∧ ( Rel 𝑟 ∧ ( 𝑟 “ { 𝑥 } ) ⊆ ( Base ‘ 𝑅 ) ) ∧ ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( 𝑥 𝑟 𝑧 → 𝑧 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ) → ( 𝑦 ∈ ( 𝑟 “ { 𝑥 } ) → 𝑦 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ) |
| 88 | 87 | ssrdv | ⊢ ( ( 𝜑 ∧ ( Rel 𝑟 ∧ ( 𝑟 “ { 𝑥 } ) ⊆ ( Base ‘ 𝑅 ) ) ∧ ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( 𝑥 𝑟 𝑧 → 𝑧 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ) → ( 𝑟 “ { 𝑥 } ) ⊆ ( ◡ 𝐹 “ 𝑎 ) ) |
| 89 | 38 43 48 73 88 | syl121anc | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ∧ 𝑠 ∈ ( UnifSt ‘ 𝑆 ) ) ∧ ( 𝑠 “ { ( 𝐹 ‘ 𝑥 ) } ) ⊆ 𝑎 ) ∧ 𝑟 ∈ ( UnifSt ‘ 𝑅 ) ) ∧ ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( 𝑥 𝑟 𝑧 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑧 ) ) ) → ( 𝑟 “ { 𝑥 } ) ⊆ ( ◡ 𝐹 “ 𝑎 ) ) |
| 90 | 89 | ex | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ∧ 𝑠 ∈ ( UnifSt ‘ 𝑆 ) ) ∧ ( 𝑠 “ { ( 𝐹 ‘ 𝑥 ) } ) ⊆ 𝑎 ) ∧ 𝑟 ∈ ( UnifSt ‘ 𝑅 ) ) → ( ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( 𝑥 𝑟 𝑧 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑧 ) ) → ( 𝑟 “ { 𝑥 } ) ⊆ ( ◡ 𝐹 “ 𝑎 ) ) ) |
| 91 | 90 | reximdva | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ∧ 𝑠 ∈ ( UnifSt ‘ 𝑆 ) ) ∧ ( 𝑠 “ { ( 𝐹 ‘ 𝑥 ) } ) ⊆ 𝑎 ) → ( ∃ 𝑟 ∈ ( UnifSt ‘ 𝑅 ) ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( 𝑥 𝑟 𝑧 → ( 𝐹 ‘ 𝑥 ) 𝑠 ( 𝐹 ‘ 𝑧 ) ) → ∃ 𝑟 ∈ ( UnifSt ‘ 𝑅 ) ( 𝑟 “ { 𝑥 } ) ⊆ ( ◡ 𝐹 “ 𝑎 ) ) ) |
| 92 | 37 91 | mpd | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ 𝑎 ) ) ∧ 𝑠 ∈ ( UnifSt ‘ 𝑆 ) ) ∧ ( 𝑠 “ { ( 𝐹 ‘ 𝑥 ) } ) ⊆ 𝑎 ) → ∃ 𝑟 ∈ ( UnifSt ‘ 𝑅 ) ( 𝑟 “ { 𝑥 } ) ⊆ ( ◡ 𝐹 “ 𝑎 ) ) |
| 93 | sneq | ⊢ ( 𝑦 = ( 𝐹 ‘ 𝑥 ) → { 𝑦 } = { ( 𝐹 ‘ 𝑥 ) } ) | |
| 94 | 93 | imaeq2d | ⊢ ( 𝑦 = ( 𝐹 ‘ 𝑥 ) → ( 𝑠 “ { 𝑦 } ) = ( 𝑠 “ { ( 𝐹 ‘ 𝑥 ) } ) ) |
| 95 | 94 | sseq1d | ⊢ ( 𝑦 = ( 𝐹 ‘ 𝑥 ) → ( ( 𝑠 “ { 𝑦 } ) ⊆ 𝑎 ↔ ( 𝑠 “ { ( 𝐹 ‘ 𝑥 ) } ) ⊆ 𝑎 ) ) |
| 96 | 95 | rexbidv | ⊢ ( 𝑦 = ( 𝐹 ‘ 𝑥 ) → ( ∃ 𝑠 ∈ ( UnifSt ‘ 𝑆 ) ( 𝑠 “ { 𝑦 } ) ⊆ 𝑎 ↔ ∃ 𝑠 ∈ ( UnifSt ‘ 𝑆 ) ( 𝑠 “ { ( 𝐹 ‘ 𝑥 ) } ) ⊆ 𝑎 ) ) |
| 97 | simpr | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) → 𝑎 ∈ 𝐾 ) | |
| 98 | 15 | simprbi | ⊢ ( 𝑆 ∈ UnifSp → 𝐾 = ( unifTop ‘ ( UnifSt ‘ 𝑆 ) ) ) |
| 99 | 4 98 | syl | ⊢ ( 𝜑 → 𝐾 = ( unifTop ‘ ( UnifSt ‘ 𝑆 ) ) ) |
| 100 | 99 | adantr | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) → 𝐾 = ( unifTop ‘ ( UnifSt ‘ 𝑆 ) ) ) |
| 101 | 97 100 | eleqtrd | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) → 𝑎 ∈ ( unifTop ‘ ( UnifSt ‘ 𝑆 ) ) ) |
| 102 | elutop | ⊢ ( ( UnifSt ‘ 𝑆 ) ∈ ( UnifOn ‘ ( Base ‘ 𝑆 ) ) → ( 𝑎 ∈ ( unifTop ‘ ( UnifSt ‘ 𝑆 ) ) ↔ ( 𝑎 ⊆ ( Base ‘ 𝑆 ) ∧ ∀ 𝑦 ∈ 𝑎 ∃ 𝑠 ∈ ( UnifSt ‘ 𝑆 ) ( 𝑠 “ { 𝑦 } ) ⊆ 𝑎 ) ) ) | |
| 103 | 17 102 | syl | ⊢ ( 𝜑 → ( 𝑎 ∈ ( unifTop ‘ ( UnifSt ‘ 𝑆 ) ) ↔ ( 𝑎 ⊆ ( Base ‘ 𝑆 ) ∧ ∀ 𝑦 ∈ 𝑎 ∃ 𝑠 ∈ ( UnifSt ‘ 𝑆 ) ( 𝑠 “ { 𝑦 } ) ⊆ 𝑎 ) ) ) |
| 104 | 103 | adantr | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) → ( 𝑎 ∈ ( unifTop ‘ ( UnifSt ‘ 𝑆 ) ) ↔ ( 𝑎 ⊆ ( Base ‘ 𝑆 ) ∧ ∀ 𝑦 ∈ 𝑎 ∃ 𝑠 ∈ ( UnifSt ‘ 𝑆 ) ( 𝑠 “ { 𝑦 } ) ⊆ 𝑎 ) ) ) |
| 105 | 101 104 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) → ( 𝑎 ⊆ ( Base ‘ 𝑆 ) ∧ ∀ 𝑦 ∈ 𝑎 ∃ 𝑠 ∈ ( UnifSt ‘ 𝑆 ) ( 𝑠 “ { 𝑦 } ) ⊆ 𝑎 ) ) |
| 106 | 105 | simprd | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) → ∀ 𝑦 ∈ 𝑎 ∃ 𝑠 ∈ ( UnifSt ‘ 𝑆 ) ( 𝑠 “ { 𝑦 } ) ⊆ 𝑎 ) |
| 107 | 106 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ 𝑎 ) ) → ∀ 𝑦 ∈ 𝑎 ∃ 𝑠 ∈ ( UnifSt ‘ 𝑆 ) ( 𝑠 “ { 𝑦 } ) ⊆ 𝑎 ) |
| 108 | elpreima | ⊢ ( 𝐹 Fn ( Base ‘ 𝑅 ) → ( 𝑥 ∈ ( ◡ 𝐹 “ 𝑎 ) ↔ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑎 ) ) ) | |
| 109 | 21 61 108 | 3syl | ⊢ ( 𝜑 → ( 𝑥 ∈ ( ◡ 𝐹 “ 𝑎 ) ↔ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑎 ) ) ) |
| 110 | 109 | adantr | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) → ( 𝑥 ∈ ( ◡ 𝐹 “ 𝑎 ) ↔ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑎 ) ) ) |
| 111 | 110 | biimpa | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ 𝑎 ) ) → ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑎 ) ) |
| 112 | 111 | simprd | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ 𝑎 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝑎 ) |
| 113 | 96 107 112 | rspcdva | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ 𝑎 ) ) → ∃ 𝑠 ∈ ( UnifSt ‘ 𝑆 ) ( 𝑠 “ { ( 𝐹 ‘ 𝑥 ) } ) ⊆ 𝑎 ) |
| 114 | 92 113 | r19.29a | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ 𝑎 ) ) → ∃ 𝑟 ∈ ( UnifSt ‘ 𝑅 ) ( 𝑟 “ { 𝑥 } ) ⊆ ( ◡ 𝐹 “ 𝑎 ) ) |
| 115 | 114 | ralrimiva | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) → ∀ 𝑥 ∈ ( ◡ 𝐹 “ 𝑎 ) ∃ 𝑟 ∈ ( UnifSt ‘ 𝑅 ) ( 𝑟 “ { 𝑥 } ) ⊆ ( ◡ 𝐹 “ 𝑎 ) ) |
| 116 | 10 | simprbi | ⊢ ( 𝑅 ∈ UnifSp → 𝐽 = ( unifTop ‘ ( UnifSt ‘ 𝑅 ) ) ) |
| 117 | 3 116 | syl | ⊢ ( 𝜑 → 𝐽 = ( unifTop ‘ ( UnifSt ‘ 𝑅 ) ) ) |
| 118 | 117 | adantr | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) → 𝐽 = ( unifTop ‘ ( UnifSt ‘ 𝑅 ) ) ) |
| 119 | 118 | eleq2d | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) → ( ( ◡ 𝐹 “ 𝑎 ) ∈ 𝐽 ↔ ( ◡ 𝐹 “ 𝑎 ) ∈ ( unifTop ‘ ( UnifSt ‘ 𝑅 ) ) ) ) |
| 120 | elutop | ⊢ ( ( UnifSt ‘ 𝑅 ) ∈ ( UnifOn ‘ ( Base ‘ 𝑅 ) ) → ( ( ◡ 𝐹 “ 𝑎 ) ∈ ( unifTop ‘ ( UnifSt ‘ 𝑅 ) ) ↔ ( ( ◡ 𝐹 “ 𝑎 ) ⊆ ( Base ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ ( ◡ 𝐹 “ 𝑎 ) ∃ 𝑟 ∈ ( UnifSt ‘ 𝑅 ) ( 𝑟 “ { 𝑥 } ) ⊆ ( ◡ 𝐹 “ 𝑎 ) ) ) ) | |
| 121 | 12 120 | syl | ⊢ ( 𝜑 → ( ( ◡ 𝐹 “ 𝑎 ) ∈ ( unifTop ‘ ( UnifSt ‘ 𝑅 ) ) ↔ ( ( ◡ 𝐹 “ 𝑎 ) ⊆ ( Base ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ ( ◡ 𝐹 “ 𝑎 ) ∃ 𝑟 ∈ ( UnifSt ‘ 𝑅 ) ( 𝑟 “ { 𝑥 } ) ⊆ ( ◡ 𝐹 “ 𝑎 ) ) ) ) |
| 122 | 121 | adantr | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) → ( ( ◡ 𝐹 “ 𝑎 ) ∈ ( unifTop ‘ ( UnifSt ‘ 𝑅 ) ) ↔ ( ( ◡ 𝐹 “ 𝑎 ) ⊆ ( Base ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ ( ◡ 𝐹 “ 𝑎 ) ∃ 𝑟 ∈ ( UnifSt ‘ 𝑅 ) ( 𝑟 “ { 𝑥 } ) ⊆ ( ◡ 𝐹 “ 𝑎 ) ) ) ) |
| 123 | 119 122 | bitrd | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) → ( ( ◡ 𝐹 “ 𝑎 ) ∈ 𝐽 ↔ ( ( ◡ 𝐹 “ 𝑎 ) ⊆ ( Base ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ ( ◡ 𝐹 “ 𝑎 ) ∃ 𝑟 ∈ ( UnifSt ‘ 𝑅 ) ( 𝑟 “ { 𝑥 } ) ⊆ ( ◡ 𝐹 “ 𝑎 ) ) ) ) |
| 124 | 25 115 123 | mpbir2and | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐾 ) → ( ◡ 𝐹 “ 𝑎 ) ∈ 𝐽 ) |
| 125 | 124 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝐾 ( ◡ 𝐹 “ 𝑎 ) ∈ 𝐽 ) |
| 126 | 8 1 | istps | ⊢ ( 𝑅 ∈ TopSp ↔ 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝑅 ) ) ) |
| 127 | 5 126 | sylib | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝑅 ) ) ) |
| 128 | 13 2 | istps | ⊢ ( 𝑆 ∈ TopSp ↔ 𝐾 ∈ ( TopOn ‘ ( Base ‘ 𝑆 ) ) ) |
| 129 | 6 128 | sylib | ⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ ( Base ‘ 𝑆 ) ) ) |
| 130 | iscn | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝑅 ) ) ∧ 𝐾 ∈ ( TopOn ‘ ( Base ‘ 𝑆 ) ) ) → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ↔ ( 𝐹 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 ) ∧ ∀ 𝑎 ∈ 𝐾 ( ◡ 𝐹 “ 𝑎 ) ∈ 𝐽 ) ) ) | |
| 131 | 127 129 130 | syl2anc | ⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ↔ ( 𝐹 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 ) ∧ ∀ 𝑎 ∈ 𝐾 ( ◡ 𝐹 “ 𝑎 ) ∈ 𝐽 ) ) ) |
| 132 | 21 125 131 | mpbir2and | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) |