This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Uniform continuity implies continuity. Deduction form. Proposition 1 of BourbakiTop1 p. II.6. (Contributed by Thierry Arnoux, 30-Nov-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ucncn.j | |- J = ( TopOpen ` R ) |
|
| ucncn.k | |- K = ( TopOpen ` S ) |
||
| ucncn.1 | |- ( ph -> R e. UnifSp ) |
||
| ucncn.2 | |- ( ph -> S e. UnifSp ) |
||
| ucncn.3 | |- ( ph -> R e. TopSp ) |
||
| ucncn.4 | |- ( ph -> S e. TopSp ) |
||
| ucncn.5 | |- ( ph -> F e. ( ( UnifSt ` R ) uCn ( UnifSt ` S ) ) ) |
||
| Assertion | ucncn | |- ( ph -> F e. ( J Cn K ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ucncn.j | |- J = ( TopOpen ` R ) |
|
| 2 | ucncn.k | |- K = ( TopOpen ` S ) |
|
| 3 | ucncn.1 | |- ( ph -> R e. UnifSp ) |
|
| 4 | ucncn.2 | |- ( ph -> S e. UnifSp ) |
|
| 5 | ucncn.3 | |- ( ph -> R e. TopSp ) |
|
| 6 | ucncn.4 | |- ( ph -> S e. TopSp ) |
|
| 7 | ucncn.5 | |- ( ph -> F e. ( ( UnifSt ` R ) uCn ( UnifSt ` S ) ) ) |
|
| 8 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 9 | eqid | |- ( UnifSt ` R ) = ( UnifSt ` R ) |
|
| 10 | 8 9 1 | isusp | |- ( R e. UnifSp <-> ( ( UnifSt ` R ) e. ( UnifOn ` ( Base ` R ) ) /\ J = ( unifTop ` ( UnifSt ` R ) ) ) ) |
| 11 | 10 | simplbi | |- ( R e. UnifSp -> ( UnifSt ` R ) e. ( UnifOn ` ( Base ` R ) ) ) |
| 12 | 3 11 | syl | |- ( ph -> ( UnifSt ` R ) e. ( UnifOn ` ( Base ` R ) ) ) |
| 13 | eqid | |- ( Base ` S ) = ( Base ` S ) |
|
| 14 | eqid | |- ( UnifSt ` S ) = ( UnifSt ` S ) |
|
| 15 | 13 14 2 | isusp | |- ( S e. UnifSp <-> ( ( UnifSt ` S ) e. ( UnifOn ` ( Base ` S ) ) /\ K = ( unifTop ` ( UnifSt ` S ) ) ) ) |
| 16 | 15 | simplbi | |- ( S e. UnifSp -> ( UnifSt ` S ) e. ( UnifOn ` ( Base ` S ) ) ) |
| 17 | 4 16 | syl | |- ( ph -> ( UnifSt ` S ) e. ( UnifOn ` ( Base ` S ) ) ) |
| 18 | isucn | |- ( ( ( UnifSt ` R ) e. ( UnifOn ` ( Base ` R ) ) /\ ( UnifSt ` S ) e. ( UnifOn ` ( Base ` S ) ) ) -> ( F e. ( ( UnifSt ` R ) uCn ( UnifSt ` S ) ) <-> ( F : ( Base ` R ) --> ( Base ` S ) /\ A. s e. ( UnifSt ` S ) E. r e. ( UnifSt ` R ) A. x e. ( Base ` R ) A. z e. ( Base ` R ) ( x r z -> ( F ` x ) s ( F ` z ) ) ) ) ) |
|
| 19 | 12 17 18 | syl2anc | |- ( ph -> ( F e. ( ( UnifSt ` R ) uCn ( UnifSt ` S ) ) <-> ( F : ( Base ` R ) --> ( Base ` S ) /\ A. s e. ( UnifSt ` S ) E. r e. ( UnifSt ` R ) A. x e. ( Base ` R ) A. z e. ( Base ` R ) ( x r z -> ( F ` x ) s ( F ` z ) ) ) ) ) |
| 20 | 7 19 | mpbid | |- ( ph -> ( F : ( Base ` R ) --> ( Base ` S ) /\ A. s e. ( UnifSt ` S ) E. r e. ( UnifSt ` R ) A. x e. ( Base ` R ) A. z e. ( Base ` R ) ( x r z -> ( F ` x ) s ( F ` z ) ) ) ) |
| 21 | 20 | simpld | |- ( ph -> F : ( Base ` R ) --> ( Base ` S ) ) |
| 22 | cnvimass | |- ( `' F " a ) C_ dom F |
|
| 23 | 21 | fdmd | |- ( ph -> dom F = ( Base ` R ) ) |
| 24 | 23 | adantr | |- ( ( ph /\ a e. K ) -> dom F = ( Base ` R ) ) |
| 25 | 22 24 | sseqtrid | |- ( ( ph /\ a e. K ) -> ( `' F " a ) C_ ( Base ` R ) ) |
| 26 | simplll | |- ( ( ( ( ph /\ a e. K ) /\ x e. ( `' F " a ) ) /\ s e. ( UnifSt ` S ) ) -> ph ) |
|
| 27 | simpr | |- ( ( ( ( ph /\ a e. K ) /\ x e. ( `' F " a ) ) /\ s e. ( UnifSt ` S ) ) -> s e. ( UnifSt ` S ) ) |
|
| 28 | 25 | ad2antrr | |- ( ( ( ( ph /\ a e. K ) /\ x e. ( `' F " a ) ) /\ s e. ( UnifSt ` S ) ) -> ( `' F " a ) C_ ( Base ` R ) ) |
| 29 | simplr | |- ( ( ( ( ph /\ a e. K ) /\ x e. ( `' F " a ) ) /\ s e. ( UnifSt ` S ) ) -> x e. ( `' F " a ) ) |
|
| 30 | 28 29 | sseldd | |- ( ( ( ( ph /\ a e. K ) /\ x e. ( `' F " a ) ) /\ s e. ( UnifSt ` S ) ) -> x e. ( Base ` R ) ) |
| 31 | 20 | simprd | |- ( ph -> A. s e. ( UnifSt ` S ) E. r e. ( UnifSt ` R ) A. x e. ( Base ` R ) A. z e. ( Base ` R ) ( x r z -> ( F ` x ) s ( F ` z ) ) ) |
| 32 | 31 | r19.21bi | |- ( ( ph /\ s e. ( UnifSt ` S ) ) -> E. r e. ( UnifSt ` R ) A. x e. ( Base ` R ) A. z e. ( Base ` R ) ( x r z -> ( F ` x ) s ( F ` z ) ) ) |
| 33 | r19.12 | |- ( E. r e. ( UnifSt ` R ) A. x e. ( Base ` R ) A. z e. ( Base ` R ) ( x r z -> ( F ` x ) s ( F ` z ) ) -> A. x e. ( Base ` R ) E. r e. ( UnifSt ` R ) A. z e. ( Base ` R ) ( x r z -> ( F ` x ) s ( F ` z ) ) ) |
|
| 34 | 32 33 | syl | |- ( ( ph /\ s e. ( UnifSt ` S ) ) -> A. x e. ( Base ` R ) E. r e. ( UnifSt ` R ) A. z e. ( Base ` R ) ( x r z -> ( F ` x ) s ( F ` z ) ) ) |
| 35 | 34 | r19.21bi | |- ( ( ( ph /\ s e. ( UnifSt ` S ) ) /\ x e. ( Base ` R ) ) -> E. r e. ( UnifSt ` R ) A. z e. ( Base ` R ) ( x r z -> ( F ` x ) s ( F ` z ) ) ) |
| 36 | 26 27 30 35 | syl21anc | |- ( ( ( ( ph /\ a e. K ) /\ x e. ( `' F " a ) ) /\ s e. ( UnifSt ` S ) ) -> E. r e. ( UnifSt ` R ) A. z e. ( Base ` R ) ( x r z -> ( F ` x ) s ( F ` z ) ) ) |
| 37 | 36 | adantr | |- ( ( ( ( ( ph /\ a e. K ) /\ x e. ( `' F " a ) ) /\ s e. ( UnifSt ` S ) ) /\ ( s " { ( F ` x ) } ) C_ a ) -> E. r e. ( UnifSt ` R ) A. z e. ( Base ` R ) ( x r z -> ( F ` x ) s ( F ` z ) ) ) |
| 38 | 26 | ad3antrrr | |- ( ( ( ( ( ( ( ph /\ a e. K ) /\ x e. ( `' F " a ) ) /\ s e. ( UnifSt ` S ) ) /\ ( s " { ( F ` x ) } ) C_ a ) /\ r e. ( UnifSt ` R ) ) /\ A. z e. ( Base ` R ) ( x r z -> ( F ` x ) s ( F ` z ) ) ) -> ph ) |
| 39 | 12 | ad5antr | |- ( ( ( ( ( ( ph /\ a e. K ) /\ x e. ( `' F " a ) ) /\ s e. ( UnifSt ` S ) ) /\ ( s " { ( F ` x ) } ) C_ a ) /\ r e. ( UnifSt ` R ) ) -> ( UnifSt ` R ) e. ( UnifOn ` ( Base ` R ) ) ) |
| 40 | simpr | |- ( ( ( ( ( ( ph /\ a e. K ) /\ x e. ( `' F " a ) ) /\ s e. ( UnifSt ` S ) ) /\ ( s " { ( F ` x ) } ) C_ a ) /\ r e. ( UnifSt ` R ) ) -> r e. ( UnifSt ` R ) ) |
|
| 41 | ustrel | |- ( ( ( UnifSt ` R ) e. ( UnifOn ` ( Base ` R ) ) /\ r e. ( UnifSt ` R ) ) -> Rel r ) |
|
| 42 | 39 40 41 | syl2anc | |- ( ( ( ( ( ( ph /\ a e. K ) /\ x e. ( `' F " a ) ) /\ s e. ( UnifSt ` S ) ) /\ ( s " { ( F ` x ) } ) C_ a ) /\ r e. ( UnifSt ` R ) ) -> Rel r ) |
| 43 | 42 | adantr | |- ( ( ( ( ( ( ( ph /\ a e. K ) /\ x e. ( `' F " a ) ) /\ s e. ( UnifSt ` S ) ) /\ ( s " { ( F ` x ) } ) C_ a ) /\ r e. ( UnifSt ` R ) ) /\ A. z e. ( Base ` R ) ( x r z -> ( F ` x ) s ( F ` z ) ) ) -> Rel r ) |
| 44 | 38 12 | syl | |- ( ( ( ( ( ( ( ph /\ a e. K ) /\ x e. ( `' F " a ) ) /\ s e. ( UnifSt ` S ) ) /\ ( s " { ( F ` x ) } ) C_ a ) /\ r e. ( UnifSt ` R ) ) /\ A. z e. ( Base ` R ) ( x r z -> ( F ` x ) s ( F ` z ) ) ) -> ( UnifSt ` R ) e. ( UnifOn ` ( Base ` R ) ) ) |
| 45 | simplr | |- ( ( ( ( ( ( ( ph /\ a e. K ) /\ x e. ( `' F " a ) ) /\ s e. ( UnifSt ` S ) ) /\ ( s " { ( F ` x ) } ) C_ a ) /\ r e. ( UnifSt ` R ) ) /\ A. z e. ( Base ` R ) ( x r z -> ( F ` x ) s ( F ` z ) ) ) -> r e. ( UnifSt ` R ) ) |
|
| 46 | 30 | ad3antrrr | |- ( ( ( ( ( ( ( ph /\ a e. K ) /\ x e. ( `' F " a ) ) /\ s e. ( UnifSt ` S ) ) /\ ( s " { ( F ` x ) } ) C_ a ) /\ r e. ( UnifSt ` R ) ) /\ A. z e. ( Base ` R ) ( x r z -> ( F ` x ) s ( F ` z ) ) ) -> x e. ( Base ` R ) ) |
| 47 | ustimasn | |- ( ( ( UnifSt ` R ) e. ( UnifOn ` ( Base ` R ) ) /\ r e. ( UnifSt ` R ) /\ x e. ( Base ` R ) ) -> ( r " { x } ) C_ ( Base ` R ) ) |
|
| 48 | 44 45 46 47 | syl3anc | |- ( ( ( ( ( ( ( ph /\ a e. K ) /\ x e. ( `' F " a ) ) /\ s e. ( UnifSt ` S ) ) /\ ( s " { ( F ` x ) } ) C_ a ) /\ r e. ( UnifSt ` R ) ) /\ A. z e. ( Base ` R ) ( x r z -> ( F ` x ) s ( F ` z ) ) ) -> ( r " { x } ) C_ ( Base ` R ) ) |
| 49 | simpr | |- ( ( ( ( ( ( ( ph /\ a e. K ) /\ x e. ( `' F " a ) ) /\ s e. ( UnifSt ` S ) ) /\ ( s " { ( F ` x ) } ) C_ a ) /\ r e. ( UnifSt ` R ) ) /\ A. z e. ( Base ` R ) ( x r z -> ( F ` x ) s ( F ` z ) ) ) -> A. z e. ( Base ` R ) ( x r z -> ( F ` x ) s ( F ` z ) ) ) |
|
| 50 | simplr | |- ( ( ( ( ( ( ( ( ph /\ a e. K ) /\ x e. ( `' F " a ) ) /\ s e. ( UnifSt ` S ) ) /\ ( s " { ( F ` x ) } ) C_ a ) /\ r e. ( UnifSt ` R ) ) /\ z e. ( Base ` R ) ) /\ ( F ` x ) s ( F ` z ) ) -> z e. ( Base ` R ) ) |
|
| 51 | simpllr | |- ( ( ( ( ( ( ( ph /\ a e. K ) /\ x e. ( `' F " a ) ) /\ s e. ( UnifSt ` S ) ) /\ ( s " { ( F ` x ) } ) C_ a ) /\ r e. ( UnifSt ` R ) ) /\ ( F ` x ) s ( F ` z ) ) -> ( s " { ( F ` x ) } ) C_ a ) |
|
| 52 | 17 | ad5antr | |- ( ( ( ( ( ( ph /\ a e. K ) /\ x e. ( `' F " a ) ) /\ s e. ( UnifSt ` S ) ) /\ ( s " { ( F ` x ) } ) C_ a ) /\ r e. ( UnifSt ` R ) ) -> ( UnifSt ` S ) e. ( UnifOn ` ( Base ` S ) ) ) |
| 53 | simpllr | |- ( ( ( ( ( ( ph /\ a e. K ) /\ x e. ( `' F " a ) ) /\ s e. ( UnifSt ` S ) ) /\ ( s " { ( F ` x ) } ) C_ a ) /\ r e. ( UnifSt ` R ) ) -> s e. ( UnifSt ` S ) ) |
|
| 54 | ustrel | |- ( ( ( UnifSt ` S ) e. ( UnifOn ` ( Base ` S ) ) /\ s e. ( UnifSt ` S ) ) -> Rel s ) |
|
| 55 | 52 53 54 | syl2anc | |- ( ( ( ( ( ( ph /\ a e. K ) /\ x e. ( `' F " a ) ) /\ s e. ( UnifSt ` S ) ) /\ ( s " { ( F ` x ) } ) C_ a ) /\ r e. ( UnifSt ` R ) ) -> Rel s ) |
| 56 | elrelimasn | |- ( Rel s -> ( ( F ` z ) e. ( s " { ( F ` x ) } ) <-> ( F ` x ) s ( F ` z ) ) ) |
|
| 57 | 55 56 | syl | |- ( ( ( ( ( ( ph /\ a e. K ) /\ x e. ( `' F " a ) ) /\ s e. ( UnifSt ` S ) ) /\ ( s " { ( F ` x ) } ) C_ a ) /\ r e. ( UnifSt ` R ) ) -> ( ( F ` z ) e. ( s " { ( F ` x ) } ) <-> ( F ` x ) s ( F ` z ) ) ) |
| 58 | 57 | biimpar | |- ( ( ( ( ( ( ( ph /\ a e. K ) /\ x e. ( `' F " a ) ) /\ s e. ( UnifSt ` S ) ) /\ ( s " { ( F ` x ) } ) C_ a ) /\ r e. ( UnifSt ` R ) ) /\ ( F ` x ) s ( F ` z ) ) -> ( F ` z ) e. ( s " { ( F ` x ) } ) ) |
| 59 | 51 58 | sseldd | |- ( ( ( ( ( ( ( ph /\ a e. K ) /\ x e. ( `' F " a ) ) /\ s e. ( UnifSt ` S ) ) /\ ( s " { ( F ` x ) } ) C_ a ) /\ r e. ( UnifSt ` R ) ) /\ ( F ` x ) s ( F ` z ) ) -> ( F ` z ) e. a ) |
| 60 | 59 | adantlr | |- ( ( ( ( ( ( ( ( ph /\ a e. K ) /\ x e. ( `' F " a ) ) /\ s e. ( UnifSt ` S ) ) /\ ( s " { ( F ` x ) } ) C_ a ) /\ r e. ( UnifSt ` R ) ) /\ z e. ( Base ` R ) ) /\ ( F ` x ) s ( F ` z ) ) -> ( F ` z ) e. a ) |
| 61 | ffn | |- ( F : ( Base ` R ) --> ( Base ` S ) -> F Fn ( Base ` R ) ) |
|
| 62 | elpreima | |- ( F Fn ( Base ` R ) -> ( z e. ( `' F " a ) <-> ( z e. ( Base ` R ) /\ ( F ` z ) e. a ) ) ) |
|
| 63 | 21 61 62 | 3syl | |- ( ph -> ( z e. ( `' F " a ) <-> ( z e. ( Base ` R ) /\ ( F ` z ) e. a ) ) ) |
| 64 | 63 | ad7antr | |- ( ( ( ( ( ( ( ( ph /\ a e. K ) /\ x e. ( `' F " a ) ) /\ s e. ( UnifSt ` S ) ) /\ ( s " { ( F ` x ) } ) C_ a ) /\ r e. ( UnifSt ` R ) ) /\ z e. ( Base ` R ) ) /\ ( F ` x ) s ( F ` z ) ) -> ( z e. ( `' F " a ) <-> ( z e. ( Base ` R ) /\ ( F ` z ) e. a ) ) ) |
| 65 | 50 60 64 | mpbir2and | |- ( ( ( ( ( ( ( ( ph /\ a e. K ) /\ x e. ( `' F " a ) ) /\ s e. ( UnifSt ` S ) ) /\ ( s " { ( F ` x ) } ) C_ a ) /\ r e. ( UnifSt ` R ) ) /\ z e. ( Base ` R ) ) /\ ( F ` x ) s ( F ` z ) ) -> z e. ( `' F " a ) ) |
| 66 | 65 | ex | |- ( ( ( ( ( ( ( ph /\ a e. K ) /\ x e. ( `' F " a ) ) /\ s e. ( UnifSt ` S ) ) /\ ( s " { ( F ` x ) } ) C_ a ) /\ r e. ( UnifSt ` R ) ) /\ z e. ( Base ` R ) ) -> ( ( F ` x ) s ( F ` z ) -> z e. ( `' F " a ) ) ) |
| 67 | 66 | ralrimiva | |- ( ( ( ( ( ( ph /\ a e. K ) /\ x e. ( `' F " a ) ) /\ s e. ( UnifSt ` S ) ) /\ ( s " { ( F ` x ) } ) C_ a ) /\ r e. ( UnifSt ` R ) ) -> A. z e. ( Base ` R ) ( ( F ` x ) s ( F ` z ) -> z e. ( `' F " a ) ) ) |
| 68 | 67 | adantr | |- ( ( ( ( ( ( ( ph /\ a e. K ) /\ x e. ( `' F " a ) ) /\ s e. ( UnifSt ` S ) ) /\ ( s " { ( F ` x ) } ) C_ a ) /\ r e. ( UnifSt ` R ) ) /\ A. z e. ( Base ` R ) ( x r z -> ( F ` x ) s ( F ` z ) ) ) -> A. z e. ( Base ` R ) ( ( F ` x ) s ( F ` z ) -> z e. ( `' F " a ) ) ) |
| 69 | r19.26 | |- ( A. z e. ( Base ` R ) ( ( x r z -> ( F ` x ) s ( F ` z ) ) /\ ( ( F ` x ) s ( F ` z ) -> z e. ( `' F " a ) ) ) <-> ( A. z e. ( Base ` R ) ( x r z -> ( F ` x ) s ( F ` z ) ) /\ A. z e. ( Base ` R ) ( ( F ` x ) s ( F ` z ) -> z e. ( `' F " a ) ) ) ) |
|
| 70 | pm3.33 | |- ( ( ( x r z -> ( F ` x ) s ( F ` z ) ) /\ ( ( F ` x ) s ( F ` z ) -> z e. ( `' F " a ) ) ) -> ( x r z -> z e. ( `' F " a ) ) ) |
|
| 71 | 70 | ralimi | |- ( A. z e. ( Base ` R ) ( ( x r z -> ( F ` x ) s ( F ` z ) ) /\ ( ( F ` x ) s ( F ` z ) -> z e. ( `' F " a ) ) ) -> A. z e. ( Base ` R ) ( x r z -> z e. ( `' F " a ) ) ) |
| 72 | 69 71 | sylbir | |- ( ( A. z e. ( Base ` R ) ( x r z -> ( F ` x ) s ( F ` z ) ) /\ A. z e. ( Base ` R ) ( ( F ` x ) s ( F ` z ) -> z e. ( `' F " a ) ) ) -> A. z e. ( Base ` R ) ( x r z -> z e. ( `' F " a ) ) ) |
| 73 | 49 68 72 | syl2anc | |- ( ( ( ( ( ( ( ph /\ a e. K ) /\ x e. ( `' F " a ) ) /\ s e. ( UnifSt ` S ) ) /\ ( s " { ( F ` x ) } ) C_ a ) /\ r e. ( UnifSt ` R ) ) /\ A. z e. ( Base ` R ) ( x r z -> ( F ` x ) s ( F ` z ) ) ) -> A. z e. ( Base ` R ) ( x r z -> z e. ( `' F " a ) ) ) |
| 74 | simpl2l | |- ( ( ( ph /\ ( Rel r /\ ( r " { x } ) C_ ( Base ` R ) ) /\ A. z e. ( Base ` R ) ( x r z -> z e. ( `' F " a ) ) ) /\ y e. ( r " { x } ) ) -> Rel r ) |
|
| 75 | simpr | |- ( ( ( ph /\ ( Rel r /\ ( r " { x } ) C_ ( Base ` R ) ) /\ A. z e. ( Base ` R ) ( x r z -> z e. ( `' F " a ) ) ) /\ y e. ( r " { x } ) ) -> y e. ( r " { x } ) ) |
|
| 76 | elrelimasn | |- ( Rel r -> ( y e. ( r " { x } ) <-> x r y ) ) |
|
| 77 | 76 | biimpa | |- ( ( Rel r /\ y e. ( r " { x } ) ) -> x r y ) |
| 78 | 74 75 77 | syl2anc | |- ( ( ( ph /\ ( Rel r /\ ( r " { x } ) C_ ( Base ` R ) ) /\ A. z e. ( Base ` R ) ( x r z -> z e. ( `' F " a ) ) ) /\ y e. ( r " { x } ) ) -> x r y ) |
| 79 | breq2 | |- ( z = y -> ( x r z <-> x r y ) ) |
|
| 80 | eleq1w | |- ( z = y -> ( z e. ( `' F " a ) <-> y e. ( `' F " a ) ) ) |
|
| 81 | 79 80 | imbi12d | |- ( z = y -> ( ( x r z -> z e. ( `' F " a ) ) <-> ( x r y -> y e. ( `' F " a ) ) ) ) |
| 82 | simpl3 | |- ( ( ( ph /\ ( Rel r /\ ( r " { x } ) C_ ( Base ` R ) ) /\ A. z e. ( Base ` R ) ( x r z -> z e. ( `' F " a ) ) ) /\ y e. ( r " { x } ) ) -> A. z e. ( Base ` R ) ( x r z -> z e. ( `' F " a ) ) ) |
|
| 83 | simpl2r | |- ( ( ( ph /\ ( Rel r /\ ( r " { x } ) C_ ( Base ` R ) ) /\ A. z e. ( Base ` R ) ( x r z -> z e. ( `' F " a ) ) ) /\ y e. ( r " { x } ) ) -> ( r " { x } ) C_ ( Base ` R ) ) |
|
| 84 | 83 75 | sseldd | |- ( ( ( ph /\ ( Rel r /\ ( r " { x } ) C_ ( Base ` R ) ) /\ A. z e. ( Base ` R ) ( x r z -> z e. ( `' F " a ) ) ) /\ y e. ( r " { x } ) ) -> y e. ( Base ` R ) ) |
| 85 | 81 82 84 | rspcdva | |- ( ( ( ph /\ ( Rel r /\ ( r " { x } ) C_ ( Base ` R ) ) /\ A. z e. ( Base ` R ) ( x r z -> z e. ( `' F " a ) ) ) /\ y e. ( r " { x } ) ) -> ( x r y -> y e. ( `' F " a ) ) ) |
| 86 | 78 85 | mpd | |- ( ( ( ph /\ ( Rel r /\ ( r " { x } ) C_ ( Base ` R ) ) /\ A. z e. ( Base ` R ) ( x r z -> z e. ( `' F " a ) ) ) /\ y e. ( r " { x } ) ) -> y e. ( `' F " a ) ) |
| 87 | 86 | ex | |- ( ( ph /\ ( Rel r /\ ( r " { x } ) C_ ( Base ` R ) ) /\ A. z e. ( Base ` R ) ( x r z -> z e. ( `' F " a ) ) ) -> ( y e. ( r " { x } ) -> y e. ( `' F " a ) ) ) |
| 88 | 87 | ssrdv | |- ( ( ph /\ ( Rel r /\ ( r " { x } ) C_ ( Base ` R ) ) /\ A. z e. ( Base ` R ) ( x r z -> z e. ( `' F " a ) ) ) -> ( r " { x } ) C_ ( `' F " a ) ) |
| 89 | 38 43 48 73 88 | syl121anc | |- ( ( ( ( ( ( ( ph /\ a e. K ) /\ x e. ( `' F " a ) ) /\ s e. ( UnifSt ` S ) ) /\ ( s " { ( F ` x ) } ) C_ a ) /\ r e. ( UnifSt ` R ) ) /\ A. z e. ( Base ` R ) ( x r z -> ( F ` x ) s ( F ` z ) ) ) -> ( r " { x } ) C_ ( `' F " a ) ) |
| 90 | 89 | ex | |- ( ( ( ( ( ( ph /\ a e. K ) /\ x e. ( `' F " a ) ) /\ s e. ( UnifSt ` S ) ) /\ ( s " { ( F ` x ) } ) C_ a ) /\ r e. ( UnifSt ` R ) ) -> ( A. z e. ( Base ` R ) ( x r z -> ( F ` x ) s ( F ` z ) ) -> ( r " { x } ) C_ ( `' F " a ) ) ) |
| 91 | 90 | reximdva | |- ( ( ( ( ( ph /\ a e. K ) /\ x e. ( `' F " a ) ) /\ s e. ( UnifSt ` S ) ) /\ ( s " { ( F ` x ) } ) C_ a ) -> ( E. r e. ( UnifSt ` R ) A. z e. ( Base ` R ) ( x r z -> ( F ` x ) s ( F ` z ) ) -> E. r e. ( UnifSt ` R ) ( r " { x } ) C_ ( `' F " a ) ) ) |
| 92 | 37 91 | mpd | |- ( ( ( ( ( ph /\ a e. K ) /\ x e. ( `' F " a ) ) /\ s e. ( UnifSt ` S ) ) /\ ( s " { ( F ` x ) } ) C_ a ) -> E. r e. ( UnifSt ` R ) ( r " { x } ) C_ ( `' F " a ) ) |
| 93 | sneq | |- ( y = ( F ` x ) -> { y } = { ( F ` x ) } ) |
|
| 94 | 93 | imaeq2d | |- ( y = ( F ` x ) -> ( s " { y } ) = ( s " { ( F ` x ) } ) ) |
| 95 | 94 | sseq1d | |- ( y = ( F ` x ) -> ( ( s " { y } ) C_ a <-> ( s " { ( F ` x ) } ) C_ a ) ) |
| 96 | 95 | rexbidv | |- ( y = ( F ` x ) -> ( E. s e. ( UnifSt ` S ) ( s " { y } ) C_ a <-> E. s e. ( UnifSt ` S ) ( s " { ( F ` x ) } ) C_ a ) ) |
| 97 | simpr | |- ( ( ph /\ a e. K ) -> a e. K ) |
|
| 98 | 15 | simprbi | |- ( S e. UnifSp -> K = ( unifTop ` ( UnifSt ` S ) ) ) |
| 99 | 4 98 | syl | |- ( ph -> K = ( unifTop ` ( UnifSt ` S ) ) ) |
| 100 | 99 | adantr | |- ( ( ph /\ a e. K ) -> K = ( unifTop ` ( UnifSt ` S ) ) ) |
| 101 | 97 100 | eleqtrd | |- ( ( ph /\ a e. K ) -> a e. ( unifTop ` ( UnifSt ` S ) ) ) |
| 102 | elutop | |- ( ( UnifSt ` S ) e. ( UnifOn ` ( Base ` S ) ) -> ( a e. ( unifTop ` ( UnifSt ` S ) ) <-> ( a C_ ( Base ` S ) /\ A. y e. a E. s e. ( UnifSt ` S ) ( s " { y } ) C_ a ) ) ) |
|
| 103 | 17 102 | syl | |- ( ph -> ( a e. ( unifTop ` ( UnifSt ` S ) ) <-> ( a C_ ( Base ` S ) /\ A. y e. a E. s e. ( UnifSt ` S ) ( s " { y } ) C_ a ) ) ) |
| 104 | 103 | adantr | |- ( ( ph /\ a e. K ) -> ( a e. ( unifTop ` ( UnifSt ` S ) ) <-> ( a C_ ( Base ` S ) /\ A. y e. a E. s e. ( UnifSt ` S ) ( s " { y } ) C_ a ) ) ) |
| 105 | 101 104 | mpbid | |- ( ( ph /\ a e. K ) -> ( a C_ ( Base ` S ) /\ A. y e. a E. s e. ( UnifSt ` S ) ( s " { y } ) C_ a ) ) |
| 106 | 105 | simprd | |- ( ( ph /\ a e. K ) -> A. y e. a E. s e. ( UnifSt ` S ) ( s " { y } ) C_ a ) |
| 107 | 106 | adantr | |- ( ( ( ph /\ a e. K ) /\ x e. ( `' F " a ) ) -> A. y e. a E. s e. ( UnifSt ` S ) ( s " { y } ) C_ a ) |
| 108 | elpreima | |- ( F Fn ( Base ` R ) -> ( x e. ( `' F " a ) <-> ( x e. ( Base ` R ) /\ ( F ` x ) e. a ) ) ) |
|
| 109 | 21 61 108 | 3syl | |- ( ph -> ( x e. ( `' F " a ) <-> ( x e. ( Base ` R ) /\ ( F ` x ) e. a ) ) ) |
| 110 | 109 | adantr | |- ( ( ph /\ a e. K ) -> ( x e. ( `' F " a ) <-> ( x e. ( Base ` R ) /\ ( F ` x ) e. a ) ) ) |
| 111 | 110 | biimpa | |- ( ( ( ph /\ a e. K ) /\ x e. ( `' F " a ) ) -> ( x e. ( Base ` R ) /\ ( F ` x ) e. a ) ) |
| 112 | 111 | simprd | |- ( ( ( ph /\ a e. K ) /\ x e. ( `' F " a ) ) -> ( F ` x ) e. a ) |
| 113 | 96 107 112 | rspcdva | |- ( ( ( ph /\ a e. K ) /\ x e. ( `' F " a ) ) -> E. s e. ( UnifSt ` S ) ( s " { ( F ` x ) } ) C_ a ) |
| 114 | 92 113 | r19.29a | |- ( ( ( ph /\ a e. K ) /\ x e. ( `' F " a ) ) -> E. r e. ( UnifSt ` R ) ( r " { x } ) C_ ( `' F " a ) ) |
| 115 | 114 | ralrimiva | |- ( ( ph /\ a e. K ) -> A. x e. ( `' F " a ) E. r e. ( UnifSt ` R ) ( r " { x } ) C_ ( `' F " a ) ) |
| 116 | 10 | simprbi | |- ( R e. UnifSp -> J = ( unifTop ` ( UnifSt ` R ) ) ) |
| 117 | 3 116 | syl | |- ( ph -> J = ( unifTop ` ( UnifSt ` R ) ) ) |
| 118 | 117 | adantr | |- ( ( ph /\ a e. K ) -> J = ( unifTop ` ( UnifSt ` R ) ) ) |
| 119 | 118 | eleq2d | |- ( ( ph /\ a e. K ) -> ( ( `' F " a ) e. J <-> ( `' F " a ) e. ( unifTop ` ( UnifSt ` R ) ) ) ) |
| 120 | elutop | |- ( ( UnifSt ` R ) e. ( UnifOn ` ( Base ` R ) ) -> ( ( `' F " a ) e. ( unifTop ` ( UnifSt ` R ) ) <-> ( ( `' F " a ) C_ ( Base ` R ) /\ A. x e. ( `' F " a ) E. r e. ( UnifSt ` R ) ( r " { x } ) C_ ( `' F " a ) ) ) ) |
|
| 121 | 12 120 | syl | |- ( ph -> ( ( `' F " a ) e. ( unifTop ` ( UnifSt ` R ) ) <-> ( ( `' F " a ) C_ ( Base ` R ) /\ A. x e. ( `' F " a ) E. r e. ( UnifSt ` R ) ( r " { x } ) C_ ( `' F " a ) ) ) ) |
| 122 | 121 | adantr | |- ( ( ph /\ a e. K ) -> ( ( `' F " a ) e. ( unifTop ` ( UnifSt ` R ) ) <-> ( ( `' F " a ) C_ ( Base ` R ) /\ A. x e. ( `' F " a ) E. r e. ( UnifSt ` R ) ( r " { x } ) C_ ( `' F " a ) ) ) ) |
| 123 | 119 122 | bitrd | |- ( ( ph /\ a e. K ) -> ( ( `' F " a ) e. J <-> ( ( `' F " a ) C_ ( Base ` R ) /\ A. x e. ( `' F " a ) E. r e. ( UnifSt ` R ) ( r " { x } ) C_ ( `' F " a ) ) ) ) |
| 124 | 25 115 123 | mpbir2and | |- ( ( ph /\ a e. K ) -> ( `' F " a ) e. J ) |
| 125 | 124 | ralrimiva | |- ( ph -> A. a e. K ( `' F " a ) e. J ) |
| 126 | 8 1 | istps | |- ( R e. TopSp <-> J e. ( TopOn ` ( Base ` R ) ) ) |
| 127 | 5 126 | sylib | |- ( ph -> J e. ( TopOn ` ( Base ` R ) ) ) |
| 128 | 13 2 | istps | |- ( S e. TopSp <-> K e. ( TopOn ` ( Base ` S ) ) ) |
| 129 | 6 128 | sylib | |- ( ph -> K e. ( TopOn ` ( Base ` S ) ) ) |
| 130 | iscn | |- ( ( J e. ( TopOn ` ( Base ` R ) ) /\ K e. ( TopOn ` ( Base ` S ) ) ) -> ( F e. ( J Cn K ) <-> ( F : ( Base ` R ) --> ( Base ` S ) /\ A. a e. K ( `' F " a ) e. J ) ) ) |
|
| 131 | 127 129 130 | syl2anc | |- ( ph -> ( F e. ( J Cn K ) <-> ( F : ( Base ` R ) --> ( Base ` S ) /\ A. a e. K ( `' F " a ) e. J ) ) ) |
| 132 | 21 125 131 | mpbir2and | |- ( ph -> F e. ( J Cn K ) ) |