This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Continuity of a binary operation on metric spaces. (Contributed by Mario Carneiro, 2-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | metcn.2 | ⊢ 𝐽 = ( MetOpen ‘ 𝐶 ) | |
| metcn.4 | ⊢ 𝐾 = ( MetOpen ‘ 𝐷 ) | ||
| txmetcnp.4 | ⊢ 𝐿 = ( MetOpen ‘ 𝐸 ) | ||
| Assertion | txmetcnp | ⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝐸 ∈ ( ∞Met ‘ 𝑍 ) ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ( 𝐹 ∈ ( ( ( 𝐽 ×t 𝐾 ) CnP 𝐿 ) ‘ 〈 𝐴 , 𝐵 〉 ) ↔ ( 𝐹 : ( 𝑋 × 𝑌 ) ⟶ 𝑍 ∧ ∀ 𝑧 ∈ ℝ+ ∃ 𝑤 ∈ ℝ+ ∀ 𝑢 ∈ 𝑋 ∀ 𝑣 ∈ 𝑌 ( ( ( 𝐴 𝐶 𝑢 ) < 𝑤 ∧ ( 𝐵 𝐷 𝑣 ) < 𝑤 ) → ( ( 𝐴 𝐹 𝐵 ) 𝐸 ( 𝑢 𝐹 𝑣 ) ) < 𝑧 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | metcn.2 | ⊢ 𝐽 = ( MetOpen ‘ 𝐶 ) | |
| 2 | metcn.4 | ⊢ 𝐾 = ( MetOpen ‘ 𝐷 ) | |
| 3 | txmetcnp.4 | ⊢ 𝐿 = ( MetOpen ‘ 𝐸 ) | |
| 4 | eqid | ⊢ ( dist ‘ ( ( toMetSp ‘ 𝐶 ) ×s ( toMetSp ‘ 𝐷 ) ) ) = ( dist ‘ ( ( toMetSp ‘ 𝐶 ) ×s ( toMetSp ‘ 𝐷 ) ) ) | |
| 5 | simpl1 | ⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝐸 ∈ ( ∞Met ‘ 𝑍 ) ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ) | |
| 6 | simpl2 | ⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝐸 ∈ ( ∞Met ‘ 𝑍 ) ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ) | |
| 7 | 4 5 6 | tmsxps | ⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝐸 ∈ ( ∞Met ‘ 𝑍 ) ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ( dist ‘ ( ( toMetSp ‘ 𝐶 ) ×s ( toMetSp ‘ 𝐷 ) ) ) ∈ ( ∞Met ‘ ( 𝑋 × 𝑌 ) ) ) |
| 8 | simpl3 | ⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝐸 ∈ ( ∞Met ‘ 𝑍 ) ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → 𝐸 ∈ ( ∞Met ‘ 𝑍 ) ) | |
| 9 | opelxpi | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) → 〈 𝐴 , 𝐵 〉 ∈ ( 𝑋 × 𝑌 ) ) | |
| 10 | 9 | adantl | ⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝐸 ∈ ( ∞Met ‘ 𝑍 ) ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → 〈 𝐴 , 𝐵 〉 ∈ ( 𝑋 × 𝑌 ) ) |
| 11 | eqid | ⊢ ( MetOpen ‘ ( dist ‘ ( ( toMetSp ‘ 𝐶 ) ×s ( toMetSp ‘ 𝐷 ) ) ) ) = ( MetOpen ‘ ( dist ‘ ( ( toMetSp ‘ 𝐶 ) ×s ( toMetSp ‘ 𝐷 ) ) ) ) | |
| 12 | 11 3 | metcnp | ⊢ ( ( ( dist ‘ ( ( toMetSp ‘ 𝐶 ) ×s ( toMetSp ‘ 𝐷 ) ) ) ∈ ( ∞Met ‘ ( 𝑋 × 𝑌 ) ) ∧ 𝐸 ∈ ( ∞Met ‘ 𝑍 ) ∧ 〈 𝐴 , 𝐵 〉 ∈ ( 𝑋 × 𝑌 ) ) → ( 𝐹 ∈ ( ( ( MetOpen ‘ ( dist ‘ ( ( toMetSp ‘ 𝐶 ) ×s ( toMetSp ‘ 𝐷 ) ) ) ) CnP 𝐿 ) ‘ 〈 𝐴 , 𝐵 〉 ) ↔ ( 𝐹 : ( 𝑋 × 𝑌 ) ⟶ 𝑍 ∧ ∀ 𝑧 ∈ ℝ+ ∃ 𝑤 ∈ ℝ+ ∀ 𝑥 ∈ ( 𝑋 × 𝑌 ) ( ( 〈 𝐴 , 𝐵 〉 ( dist ‘ ( ( toMetSp ‘ 𝐶 ) ×s ( toMetSp ‘ 𝐷 ) ) ) 𝑥 ) < 𝑤 → ( ( 𝐹 ‘ 〈 𝐴 , 𝐵 〉 ) 𝐸 ( 𝐹 ‘ 𝑥 ) ) < 𝑧 ) ) ) ) |
| 13 | 7 8 10 12 | syl3anc | ⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝐸 ∈ ( ∞Met ‘ 𝑍 ) ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ( 𝐹 ∈ ( ( ( MetOpen ‘ ( dist ‘ ( ( toMetSp ‘ 𝐶 ) ×s ( toMetSp ‘ 𝐷 ) ) ) ) CnP 𝐿 ) ‘ 〈 𝐴 , 𝐵 〉 ) ↔ ( 𝐹 : ( 𝑋 × 𝑌 ) ⟶ 𝑍 ∧ ∀ 𝑧 ∈ ℝ+ ∃ 𝑤 ∈ ℝ+ ∀ 𝑥 ∈ ( 𝑋 × 𝑌 ) ( ( 〈 𝐴 , 𝐵 〉 ( dist ‘ ( ( toMetSp ‘ 𝐶 ) ×s ( toMetSp ‘ 𝐷 ) ) ) 𝑥 ) < 𝑤 → ( ( 𝐹 ‘ 〈 𝐴 , 𝐵 〉 ) 𝐸 ( 𝐹 ‘ 𝑥 ) ) < 𝑧 ) ) ) ) |
| 14 | 4 5 6 1 2 11 | tmsxpsmopn | ⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝐸 ∈ ( ∞Met ‘ 𝑍 ) ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ( MetOpen ‘ ( dist ‘ ( ( toMetSp ‘ 𝐶 ) ×s ( toMetSp ‘ 𝐷 ) ) ) ) = ( 𝐽 ×t 𝐾 ) ) |
| 15 | 14 | oveq1d | ⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝐸 ∈ ( ∞Met ‘ 𝑍 ) ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ( ( MetOpen ‘ ( dist ‘ ( ( toMetSp ‘ 𝐶 ) ×s ( toMetSp ‘ 𝐷 ) ) ) ) CnP 𝐿 ) = ( ( 𝐽 ×t 𝐾 ) CnP 𝐿 ) ) |
| 16 | 15 | fveq1d | ⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝐸 ∈ ( ∞Met ‘ 𝑍 ) ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ( ( ( MetOpen ‘ ( dist ‘ ( ( toMetSp ‘ 𝐶 ) ×s ( toMetSp ‘ 𝐷 ) ) ) ) CnP 𝐿 ) ‘ 〈 𝐴 , 𝐵 〉 ) = ( ( ( 𝐽 ×t 𝐾 ) CnP 𝐿 ) ‘ 〈 𝐴 , 𝐵 〉 ) ) |
| 17 | 16 | eleq2d | ⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝐸 ∈ ( ∞Met ‘ 𝑍 ) ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ( 𝐹 ∈ ( ( ( MetOpen ‘ ( dist ‘ ( ( toMetSp ‘ 𝐶 ) ×s ( toMetSp ‘ 𝐷 ) ) ) ) CnP 𝐿 ) ‘ 〈 𝐴 , 𝐵 〉 ) ↔ 𝐹 ∈ ( ( ( 𝐽 ×t 𝐾 ) CnP 𝐿 ) ‘ 〈 𝐴 , 𝐵 〉 ) ) ) |
| 18 | oveq2 | ⊢ ( 𝑥 = 〈 𝑢 , 𝑣 〉 → ( 〈 𝐴 , 𝐵 〉 ( dist ‘ ( ( toMetSp ‘ 𝐶 ) ×s ( toMetSp ‘ 𝐷 ) ) ) 𝑥 ) = ( 〈 𝐴 , 𝐵 〉 ( dist ‘ ( ( toMetSp ‘ 𝐶 ) ×s ( toMetSp ‘ 𝐷 ) ) ) 〈 𝑢 , 𝑣 〉 ) ) | |
| 19 | 18 | breq1d | ⊢ ( 𝑥 = 〈 𝑢 , 𝑣 〉 → ( ( 〈 𝐴 , 𝐵 〉 ( dist ‘ ( ( toMetSp ‘ 𝐶 ) ×s ( toMetSp ‘ 𝐷 ) ) ) 𝑥 ) < 𝑤 ↔ ( 〈 𝐴 , 𝐵 〉 ( dist ‘ ( ( toMetSp ‘ 𝐶 ) ×s ( toMetSp ‘ 𝐷 ) ) ) 〈 𝑢 , 𝑣 〉 ) < 𝑤 ) ) |
| 20 | df-ov | ⊢ ( 𝐴 𝐹 𝐵 ) = ( 𝐹 ‘ 〈 𝐴 , 𝐵 〉 ) | |
| 21 | 20 | oveq1i | ⊢ ( ( 𝐴 𝐹 𝐵 ) 𝐸 ( 𝐹 ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 〈 𝐴 , 𝐵 〉 ) 𝐸 ( 𝐹 ‘ 𝑥 ) ) |
| 22 | fveq2 | ⊢ ( 𝑥 = 〈 𝑢 , 𝑣 〉 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 〈 𝑢 , 𝑣 〉 ) ) | |
| 23 | df-ov | ⊢ ( 𝑢 𝐹 𝑣 ) = ( 𝐹 ‘ 〈 𝑢 , 𝑣 〉 ) | |
| 24 | 22 23 | eqtr4di | ⊢ ( 𝑥 = 〈 𝑢 , 𝑣 〉 → ( 𝐹 ‘ 𝑥 ) = ( 𝑢 𝐹 𝑣 ) ) |
| 25 | 24 | oveq2d | ⊢ ( 𝑥 = 〈 𝑢 , 𝑣 〉 → ( ( 𝐴 𝐹 𝐵 ) 𝐸 ( 𝐹 ‘ 𝑥 ) ) = ( ( 𝐴 𝐹 𝐵 ) 𝐸 ( 𝑢 𝐹 𝑣 ) ) ) |
| 26 | 21 25 | eqtr3id | ⊢ ( 𝑥 = 〈 𝑢 , 𝑣 〉 → ( ( 𝐹 ‘ 〈 𝐴 , 𝐵 〉 ) 𝐸 ( 𝐹 ‘ 𝑥 ) ) = ( ( 𝐴 𝐹 𝐵 ) 𝐸 ( 𝑢 𝐹 𝑣 ) ) ) |
| 27 | 26 | breq1d | ⊢ ( 𝑥 = 〈 𝑢 , 𝑣 〉 → ( ( ( 𝐹 ‘ 〈 𝐴 , 𝐵 〉 ) 𝐸 ( 𝐹 ‘ 𝑥 ) ) < 𝑧 ↔ ( ( 𝐴 𝐹 𝐵 ) 𝐸 ( 𝑢 𝐹 𝑣 ) ) < 𝑧 ) ) |
| 28 | 19 27 | imbi12d | ⊢ ( 𝑥 = 〈 𝑢 , 𝑣 〉 → ( ( ( 〈 𝐴 , 𝐵 〉 ( dist ‘ ( ( toMetSp ‘ 𝐶 ) ×s ( toMetSp ‘ 𝐷 ) ) ) 𝑥 ) < 𝑤 → ( ( 𝐹 ‘ 〈 𝐴 , 𝐵 〉 ) 𝐸 ( 𝐹 ‘ 𝑥 ) ) < 𝑧 ) ↔ ( ( 〈 𝐴 , 𝐵 〉 ( dist ‘ ( ( toMetSp ‘ 𝐶 ) ×s ( toMetSp ‘ 𝐷 ) ) ) 〈 𝑢 , 𝑣 〉 ) < 𝑤 → ( ( 𝐴 𝐹 𝐵 ) 𝐸 ( 𝑢 𝐹 𝑣 ) ) < 𝑧 ) ) ) |
| 29 | 28 | ralxp | ⊢ ( ∀ 𝑥 ∈ ( 𝑋 × 𝑌 ) ( ( 〈 𝐴 , 𝐵 〉 ( dist ‘ ( ( toMetSp ‘ 𝐶 ) ×s ( toMetSp ‘ 𝐷 ) ) ) 𝑥 ) < 𝑤 → ( ( 𝐹 ‘ 〈 𝐴 , 𝐵 〉 ) 𝐸 ( 𝐹 ‘ 𝑥 ) ) < 𝑧 ) ↔ ∀ 𝑢 ∈ 𝑋 ∀ 𝑣 ∈ 𝑌 ( ( 〈 𝐴 , 𝐵 〉 ( dist ‘ ( ( toMetSp ‘ 𝐶 ) ×s ( toMetSp ‘ 𝐷 ) ) ) 〈 𝑢 , 𝑣 〉 ) < 𝑤 → ( ( 𝐴 𝐹 𝐵 ) 𝐸 ( 𝑢 𝐹 𝑣 ) ) < 𝑧 ) ) |
| 30 | 5 | ad2antrr | ⊢ ( ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝐸 ∈ ( ∞Met ‘ 𝑍 ) ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) ∧ 𝐹 : ( 𝑋 × 𝑌 ) ⟶ 𝑍 ) ∧ ( 𝑤 ∈ ℝ+ ∧ ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑌 ) ) ) → 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 31 | 6 | ad2antrr | ⊢ ( ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝐸 ∈ ( ∞Met ‘ 𝑍 ) ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) ∧ 𝐹 : ( 𝑋 × 𝑌 ) ⟶ 𝑍 ) ∧ ( 𝑤 ∈ ℝ+ ∧ ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑌 ) ) ) → 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ) |
| 32 | simpllr | ⊢ ( ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝐸 ∈ ( ∞Met ‘ 𝑍 ) ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) ∧ 𝐹 : ( 𝑋 × 𝑌 ) ⟶ 𝑍 ) ∧ ( 𝑤 ∈ ℝ+ ∧ ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑌 ) ) ) → ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) | |
| 33 | 32 | simpld | ⊢ ( ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝐸 ∈ ( ∞Met ‘ 𝑍 ) ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) ∧ 𝐹 : ( 𝑋 × 𝑌 ) ⟶ 𝑍 ) ∧ ( 𝑤 ∈ ℝ+ ∧ ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑌 ) ) ) → 𝐴 ∈ 𝑋 ) |
| 34 | 32 | simprd | ⊢ ( ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝐸 ∈ ( ∞Met ‘ 𝑍 ) ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) ∧ 𝐹 : ( 𝑋 × 𝑌 ) ⟶ 𝑍 ) ∧ ( 𝑤 ∈ ℝ+ ∧ ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑌 ) ) ) → 𝐵 ∈ 𝑌 ) |
| 35 | simprrl | ⊢ ( ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝐸 ∈ ( ∞Met ‘ 𝑍 ) ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) ∧ 𝐹 : ( 𝑋 × 𝑌 ) ⟶ 𝑍 ) ∧ ( 𝑤 ∈ ℝ+ ∧ ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑌 ) ) ) → 𝑢 ∈ 𝑋 ) | |
| 36 | simprrr | ⊢ ( ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝐸 ∈ ( ∞Met ‘ 𝑍 ) ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) ∧ 𝐹 : ( 𝑋 × 𝑌 ) ⟶ 𝑍 ) ∧ ( 𝑤 ∈ ℝ+ ∧ ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑌 ) ) ) → 𝑣 ∈ 𝑌 ) | |
| 37 | 4 30 31 33 34 35 36 | tmsxpsval2 | ⊢ ( ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝐸 ∈ ( ∞Met ‘ 𝑍 ) ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) ∧ 𝐹 : ( 𝑋 × 𝑌 ) ⟶ 𝑍 ) ∧ ( 𝑤 ∈ ℝ+ ∧ ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑌 ) ) ) → ( 〈 𝐴 , 𝐵 〉 ( dist ‘ ( ( toMetSp ‘ 𝐶 ) ×s ( toMetSp ‘ 𝐷 ) ) ) 〈 𝑢 , 𝑣 〉 ) = if ( ( 𝐴 𝐶 𝑢 ) ≤ ( 𝐵 𝐷 𝑣 ) , ( 𝐵 𝐷 𝑣 ) , ( 𝐴 𝐶 𝑢 ) ) ) |
| 38 | 37 | breq1d | ⊢ ( ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝐸 ∈ ( ∞Met ‘ 𝑍 ) ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) ∧ 𝐹 : ( 𝑋 × 𝑌 ) ⟶ 𝑍 ) ∧ ( 𝑤 ∈ ℝ+ ∧ ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑌 ) ) ) → ( ( 〈 𝐴 , 𝐵 〉 ( dist ‘ ( ( toMetSp ‘ 𝐶 ) ×s ( toMetSp ‘ 𝐷 ) ) ) 〈 𝑢 , 𝑣 〉 ) < 𝑤 ↔ if ( ( 𝐴 𝐶 𝑢 ) ≤ ( 𝐵 𝐷 𝑣 ) , ( 𝐵 𝐷 𝑣 ) , ( 𝐴 𝐶 𝑢 ) ) < 𝑤 ) ) |
| 39 | xmetcl | ⊢ ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝑢 ∈ 𝑋 ) → ( 𝐴 𝐶 𝑢 ) ∈ ℝ* ) | |
| 40 | 30 33 35 39 | syl3anc | ⊢ ( ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝐸 ∈ ( ∞Met ‘ 𝑍 ) ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) ∧ 𝐹 : ( 𝑋 × 𝑌 ) ⟶ 𝑍 ) ∧ ( 𝑤 ∈ ℝ+ ∧ ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑌 ) ) ) → ( 𝐴 𝐶 𝑢 ) ∈ ℝ* ) |
| 41 | xmetcl | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝐵 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌 ) → ( 𝐵 𝐷 𝑣 ) ∈ ℝ* ) | |
| 42 | 31 34 36 41 | syl3anc | ⊢ ( ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝐸 ∈ ( ∞Met ‘ 𝑍 ) ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) ∧ 𝐹 : ( 𝑋 × 𝑌 ) ⟶ 𝑍 ) ∧ ( 𝑤 ∈ ℝ+ ∧ ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑌 ) ) ) → ( 𝐵 𝐷 𝑣 ) ∈ ℝ* ) |
| 43 | rpxr | ⊢ ( 𝑤 ∈ ℝ+ → 𝑤 ∈ ℝ* ) | |
| 44 | 43 | ad2antrl | ⊢ ( ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝐸 ∈ ( ∞Met ‘ 𝑍 ) ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) ∧ 𝐹 : ( 𝑋 × 𝑌 ) ⟶ 𝑍 ) ∧ ( 𝑤 ∈ ℝ+ ∧ ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑌 ) ) ) → 𝑤 ∈ ℝ* ) |
| 45 | xrmaxlt | ⊢ ( ( ( 𝐴 𝐶 𝑢 ) ∈ ℝ* ∧ ( 𝐵 𝐷 𝑣 ) ∈ ℝ* ∧ 𝑤 ∈ ℝ* ) → ( if ( ( 𝐴 𝐶 𝑢 ) ≤ ( 𝐵 𝐷 𝑣 ) , ( 𝐵 𝐷 𝑣 ) , ( 𝐴 𝐶 𝑢 ) ) < 𝑤 ↔ ( ( 𝐴 𝐶 𝑢 ) < 𝑤 ∧ ( 𝐵 𝐷 𝑣 ) < 𝑤 ) ) ) | |
| 46 | 40 42 44 45 | syl3anc | ⊢ ( ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝐸 ∈ ( ∞Met ‘ 𝑍 ) ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) ∧ 𝐹 : ( 𝑋 × 𝑌 ) ⟶ 𝑍 ) ∧ ( 𝑤 ∈ ℝ+ ∧ ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑌 ) ) ) → ( if ( ( 𝐴 𝐶 𝑢 ) ≤ ( 𝐵 𝐷 𝑣 ) , ( 𝐵 𝐷 𝑣 ) , ( 𝐴 𝐶 𝑢 ) ) < 𝑤 ↔ ( ( 𝐴 𝐶 𝑢 ) < 𝑤 ∧ ( 𝐵 𝐷 𝑣 ) < 𝑤 ) ) ) |
| 47 | 38 46 | bitrd | ⊢ ( ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝐸 ∈ ( ∞Met ‘ 𝑍 ) ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) ∧ 𝐹 : ( 𝑋 × 𝑌 ) ⟶ 𝑍 ) ∧ ( 𝑤 ∈ ℝ+ ∧ ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑌 ) ) ) → ( ( 〈 𝐴 , 𝐵 〉 ( dist ‘ ( ( toMetSp ‘ 𝐶 ) ×s ( toMetSp ‘ 𝐷 ) ) ) 〈 𝑢 , 𝑣 〉 ) < 𝑤 ↔ ( ( 𝐴 𝐶 𝑢 ) < 𝑤 ∧ ( 𝐵 𝐷 𝑣 ) < 𝑤 ) ) ) |
| 48 | 47 | imbi1d | ⊢ ( ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝐸 ∈ ( ∞Met ‘ 𝑍 ) ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) ∧ 𝐹 : ( 𝑋 × 𝑌 ) ⟶ 𝑍 ) ∧ ( 𝑤 ∈ ℝ+ ∧ ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑌 ) ) ) → ( ( ( 〈 𝐴 , 𝐵 〉 ( dist ‘ ( ( toMetSp ‘ 𝐶 ) ×s ( toMetSp ‘ 𝐷 ) ) ) 〈 𝑢 , 𝑣 〉 ) < 𝑤 → ( ( 𝐴 𝐹 𝐵 ) 𝐸 ( 𝑢 𝐹 𝑣 ) ) < 𝑧 ) ↔ ( ( ( 𝐴 𝐶 𝑢 ) < 𝑤 ∧ ( 𝐵 𝐷 𝑣 ) < 𝑤 ) → ( ( 𝐴 𝐹 𝐵 ) 𝐸 ( 𝑢 𝐹 𝑣 ) ) < 𝑧 ) ) ) |
| 49 | 48 | anassrs | ⊢ ( ( ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝐸 ∈ ( ∞Met ‘ 𝑍 ) ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) ∧ 𝐹 : ( 𝑋 × 𝑌 ) ⟶ 𝑍 ) ∧ 𝑤 ∈ ℝ+ ) ∧ ( 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑌 ) ) → ( ( ( 〈 𝐴 , 𝐵 〉 ( dist ‘ ( ( toMetSp ‘ 𝐶 ) ×s ( toMetSp ‘ 𝐷 ) ) ) 〈 𝑢 , 𝑣 〉 ) < 𝑤 → ( ( 𝐴 𝐹 𝐵 ) 𝐸 ( 𝑢 𝐹 𝑣 ) ) < 𝑧 ) ↔ ( ( ( 𝐴 𝐶 𝑢 ) < 𝑤 ∧ ( 𝐵 𝐷 𝑣 ) < 𝑤 ) → ( ( 𝐴 𝐹 𝐵 ) 𝐸 ( 𝑢 𝐹 𝑣 ) ) < 𝑧 ) ) ) |
| 50 | 49 | 2ralbidva | ⊢ ( ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝐸 ∈ ( ∞Met ‘ 𝑍 ) ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) ∧ 𝐹 : ( 𝑋 × 𝑌 ) ⟶ 𝑍 ) ∧ 𝑤 ∈ ℝ+ ) → ( ∀ 𝑢 ∈ 𝑋 ∀ 𝑣 ∈ 𝑌 ( ( 〈 𝐴 , 𝐵 〉 ( dist ‘ ( ( toMetSp ‘ 𝐶 ) ×s ( toMetSp ‘ 𝐷 ) ) ) 〈 𝑢 , 𝑣 〉 ) < 𝑤 → ( ( 𝐴 𝐹 𝐵 ) 𝐸 ( 𝑢 𝐹 𝑣 ) ) < 𝑧 ) ↔ ∀ 𝑢 ∈ 𝑋 ∀ 𝑣 ∈ 𝑌 ( ( ( 𝐴 𝐶 𝑢 ) < 𝑤 ∧ ( 𝐵 𝐷 𝑣 ) < 𝑤 ) → ( ( 𝐴 𝐹 𝐵 ) 𝐸 ( 𝑢 𝐹 𝑣 ) ) < 𝑧 ) ) ) |
| 51 | 29 50 | bitrid | ⊢ ( ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝐸 ∈ ( ∞Met ‘ 𝑍 ) ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) ∧ 𝐹 : ( 𝑋 × 𝑌 ) ⟶ 𝑍 ) ∧ 𝑤 ∈ ℝ+ ) → ( ∀ 𝑥 ∈ ( 𝑋 × 𝑌 ) ( ( 〈 𝐴 , 𝐵 〉 ( dist ‘ ( ( toMetSp ‘ 𝐶 ) ×s ( toMetSp ‘ 𝐷 ) ) ) 𝑥 ) < 𝑤 → ( ( 𝐹 ‘ 〈 𝐴 , 𝐵 〉 ) 𝐸 ( 𝐹 ‘ 𝑥 ) ) < 𝑧 ) ↔ ∀ 𝑢 ∈ 𝑋 ∀ 𝑣 ∈ 𝑌 ( ( ( 𝐴 𝐶 𝑢 ) < 𝑤 ∧ ( 𝐵 𝐷 𝑣 ) < 𝑤 ) → ( ( 𝐴 𝐹 𝐵 ) 𝐸 ( 𝑢 𝐹 𝑣 ) ) < 𝑧 ) ) ) |
| 52 | 51 | rexbidva | ⊢ ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝐸 ∈ ( ∞Met ‘ 𝑍 ) ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) ∧ 𝐹 : ( 𝑋 × 𝑌 ) ⟶ 𝑍 ) → ( ∃ 𝑤 ∈ ℝ+ ∀ 𝑥 ∈ ( 𝑋 × 𝑌 ) ( ( 〈 𝐴 , 𝐵 〉 ( dist ‘ ( ( toMetSp ‘ 𝐶 ) ×s ( toMetSp ‘ 𝐷 ) ) ) 𝑥 ) < 𝑤 → ( ( 𝐹 ‘ 〈 𝐴 , 𝐵 〉 ) 𝐸 ( 𝐹 ‘ 𝑥 ) ) < 𝑧 ) ↔ ∃ 𝑤 ∈ ℝ+ ∀ 𝑢 ∈ 𝑋 ∀ 𝑣 ∈ 𝑌 ( ( ( 𝐴 𝐶 𝑢 ) < 𝑤 ∧ ( 𝐵 𝐷 𝑣 ) < 𝑤 ) → ( ( 𝐴 𝐹 𝐵 ) 𝐸 ( 𝑢 𝐹 𝑣 ) ) < 𝑧 ) ) ) |
| 53 | 52 | ralbidv | ⊢ ( ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝐸 ∈ ( ∞Met ‘ 𝑍 ) ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) ∧ 𝐹 : ( 𝑋 × 𝑌 ) ⟶ 𝑍 ) → ( ∀ 𝑧 ∈ ℝ+ ∃ 𝑤 ∈ ℝ+ ∀ 𝑥 ∈ ( 𝑋 × 𝑌 ) ( ( 〈 𝐴 , 𝐵 〉 ( dist ‘ ( ( toMetSp ‘ 𝐶 ) ×s ( toMetSp ‘ 𝐷 ) ) ) 𝑥 ) < 𝑤 → ( ( 𝐹 ‘ 〈 𝐴 , 𝐵 〉 ) 𝐸 ( 𝐹 ‘ 𝑥 ) ) < 𝑧 ) ↔ ∀ 𝑧 ∈ ℝ+ ∃ 𝑤 ∈ ℝ+ ∀ 𝑢 ∈ 𝑋 ∀ 𝑣 ∈ 𝑌 ( ( ( 𝐴 𝐶 𝑢 ) < 𝑤 ∧ ( 𝐵 𝐷 𝑣 ) < 𝑤 ) → ( ( 𝐴 𝐹 𝐵 ) 𝐸 ( 𝑢 𝐹 𝑣 ) ) < 𝑧 ) ) ) |
| 54 | 53 | pm5.32da | ⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝐸 ∈ ( ∞Met ‘ 𝑍 ) ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ( ( 𝐹 : ( 𝑋 × 𝑌 ) ⟶ 𝑍 ∧ ∀ 𝑧 ∈ ℝ+ ∃ 𝑤 ∈ ℝ+ ∀ 𝑥 ∈ ( 𝑋 × 𝑌 ) ( ( 〈 𝐴 , 𝐵 〉 ( dist ‘ ( ( toMetSp ‘ 𝐶 ) ×s ( toMetSp ‘ 𝐷 ) ) ) 𝑥 ) < 𝑤 → ( ( 𝐹 ‘ 〈 𝐴 , 𝐵 〉 ) 𝐸 ( 𝐹 ‘ 𝑥 ) ) < 𝑧 ) ) ↔ ( 𝐹 : ( 𝑋 × 𝑌 ) ⟶ 𝑍 ∧ ∀ 𝑧 ∈ ℝ+ ∃ 𝑤 ∈ ℝ+ ∀ 𝑢 ∈ 𝑋 ∀ 𝑣 ∈ 𝑌 ( ( ( 𝐴 𝐶 𝑢 ) < 𝑤 ∧ ( 𝐵 𝐷 𝑣 ) < 𝑤 ) → ( ( 𝐴 𝐹 𝐵 ) 𝐸 ( 𝑢 𝐹 𝑣 ) ) < 𝑧 ) ) ) ) |
| 55 | 13 17 54 | 3bitr3d | ⊢ ( ( ( 𝐶 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐷 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝐸 ∈ ( ∞Met ‘ 𝑍 ) ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ( 𝐹 ∈ ( ( ( 𝐽 ×t 𝐾 ) CnP 𝐿 ) ‘ 〈 𝐴 , 𝐵 〉 ) ↔ ( 𝐹 : ( 𝑋 × 𝑌 ) ⟶ 𝑍 ∧ ∀ 𝑧 ∈ ℝ+ ∃ 𝑤 ∈ ℝ+ ∀ 𝑢 ∈ 𝑋 ∀ 𝑣 ∈ 𝑌 ( ( ( 𝐴 𝐶 𝑢 ) < 𝑤 ∧ ( 𝐵 𝐷 𝑣 ) < 𝑤 ) → ( ( 𝐴 𝐹 𝐵 ) 𝐸 ( 𝑢 𝐹 𝑣 ) ) < 𝑧 ) ) ) ) |