This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Express the product of two metrics as another metric. (Contributed by Mario Carneiro, 2-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tmsxps.p | ⊢ 𝑃 = ( dist ‘ ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ) | |
| tmsxps.1 | ⊢ ( 𝜑 → 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ) | ||
| tmsxps.2 | ⊢ ( 𝜑 → 𝑁 ∈ ( ∞Met ‘ 𝑌 ) ) | ||
| tmsxpsmopn.j | ⊢ 𝐽 = ( MetOpen ‘ 𝑀 ) | ||
| tmsxpsmopn.k | ⊢ 𝐾 = ( MetOpen ‘ 𝑁 ) | ||
| tmsxpsmopn.l | ⊢ 𝐿 = ( MetOpen ‘ 𝑃 ) | ||
| Assertion | tmsxpsmopn | ⊢ ( 𝜑 → 𝐿 = ( 𝐽 ×t 𝐾 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tmsxps.p | ⊢ 𝑃 = ( dist ‘ ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ) | |
| 2 | tmsxps.1 | ⊢ ( 𝜑 → 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ) | |
| 3 | tmsxps.2 | ⊢ ( 𝜑 → 𝑁 ∈ ( ∞Met ‘ 𝑌 ) ) | |
| 4 | tmsxpsmopn.j | ⊢ 𝐽 = ( MetOpen ‘ 𝑀 ) | |
| 5 | tmsxpsmopn.k | ⊢ 𝐾 = ( MetOpen ‘ 𝑁 ) | |
| 6 | tmsxpsmopn.l | ⊢ 𝐿 = ( MetOpen ‘ 𝑃 ) | |
| 7 | eqid | ⊢ ( toMetSp ‘ 𝑀 ) = ( toMetSp ‘ 𝑀 ) | |
| 8 | 7 | tmsxms | ⊢ ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) → ( toMetSp ‘ 𝑀 ) ∈ ∞MetSp ) |
| 9 | 2 8 | syl | ⊢ ( 𝜑 → ( toMetSp ‘ 𝑀 ) ∈ ∞MetSp ) |
| 10 | xmstps | ⊢ ( ( toMetSp ‘ 𝑀 ) ∈ ∞MetSp → ( toMetSp ‘ 𝑀 ) ∈ TopSp ) | |
| 11 | 9 10 | syl | ⊢ ( 𝜑 → ( toMetSp ‘ 𝑀 ) ∈ TopSp ) |
| 12 | eqid | ⊢ ( toMetSp ‘ 𝑁 ) = ( toMetSp ‘ 𝑁 ) | |
| 13 | 12 | tmsxms | ⊢ ( 𝑁 ∈ ( ∞Met ‘ 𝑌 ) → ( toMetSp ‘ 𝑁 ) ∈ ∞MetSp ) |
| 14 | 3 13 | syl | ⊢ ( 𝜑 → ( toMetSp ‘ 𝑁 ) ∈ ∞MetSp ) |
| 15 | xmstps | ⊢ ( ( toMetSp ‘ 𝑁 ) ∈ ∞MetSp → ( toMetSp ‘ 𝑁 ) ∈ TopSp ) | |
| 16 | 14 15 | syl | ⊢ ( 𝜑 → ( toMetSp ‘ 𝑁 ) ∈ TopSp ) |
| 17 | eqid | ⊢ ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) = ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) | |
| 18 | eqid | ⊢ ( TopOpen ‘ ( toMetSp ‘ 𝑀 ) ) = ( TopOpen ‘ ( toMetSp ‘ 𝑀 ) ) | |
| 19 | eqid | ⊢ ( TopOpen ‘ ( toMetSp ‘ 𝑁 ) ) = ( TopOpen ‘ ( toMetSp ‘ 𝑁 ) ) | |
| 20 | eqid | ⊢ ( TopOpen ‘ ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ) = ( TopOpen ‘ ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ) | |
| 21 | 17 18 19 20 | xpstopn | ⊢ ( ( ( toMetSp ‘ 𝑀 ) ∈ TopSp ∧ ( toMetSp ‘ 𝑁 ) ∈ TopSp ) → ( TopOpen ‘ ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ) = ( ( TopOpen ‘ ( toMetSp ‘ 𝑀 ) ) ×t ( TopOpen ‘ ( toMetSp ‘ 𝑁 ) ) ) ) |
| 22 | 11 16 21 | syl2anc | ⊢ ( 𝜑 → ( TopOpen ‘ ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ) = ( ( TopOpen ‘ ( toMetSp ‘ 𝑀 ) ) ×t ( TopOpen ‘ ( toMetSp ‘ 𝑁 ) ) ) ) |
| 23 | 17 | xpsxms | ⊢ ( ( ( toMetSp ‘ 𝑀 ) ∈ ∞MetSp ∧ ( toMetSp ‘ 𝑁 ) ∈ ∞MetSp ) → ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ∈ ∞MetSp ) |
| 24 | 9 14 23 | syl2anc | ⊢ ( 𝜑 → ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ∈ ∞MetSp ) |
| 25 | eqid | ⊢ ( Base ‘ ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ) = ( Base ‘ ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ) | |
| 26 | 1 | reseq1i | ⊢ ( 𝑃 ↾ ( ( Base ‘ ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ) × ( Base ‘ ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ) ) ) = ( ( dist ‘ ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ) ↾ ( ( Base ‘ ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ) × ( Base ‘ ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ) ) ) |
| 27 | 20 25 26 | xmstopn | ⊢ ( ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ∈ ∞MetSp → ( TopOpen ‘ ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ) = ( MetOpen ‘ ( 𝑃 ↾ ( ( Base ‘ ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ) × ( Base ‘ ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ) ) ) ) ) |
| 28 | 24 27 | syl | ⊢ ( 𝜑 → ( TopOpen ‘ ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ) = ( MetOpen ‘ ( 𝑃 ↾ ( ( Base ‘ ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ) × ( Base ‘ ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ) ) ) ) ) |
| 29 | eqid | ⊢ ( Base ‘ ( toMetSp ‘ 𝑀 ) ) = ( Base ‘ ( toMetSp ‘ 𝑀 ) ) | |
| 30 | eqid | ⊢ ( Base ‘ ( toMetSp ‘ 𝑁 ) ) = ( Base ‘ ( toMetSp ‘ 𝑁 ) ) | |
| 31 | 17 29 30 9 14 1 | xpsdsfn2 | ⊢ ( 𝜑 → 𝑃 Fn ( ( Base ‘ ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ) × ( Base ‘ ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ) ) ) |
| 32 | fnresdm | ⊢ ( 𝑃 Fn ( ( Base ‘ ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ) × ( Base ‘ ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ) ) → ( 𝑃 ↾ ( ( Base ‘ ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ) × ( Base ‘ ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ) ) ) = 𝑃 ) | |
| 33 | 31 32 | syl | ⊢ ( 𝜑 → ( 𝑃 ↾ ( ( Base ‘ ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ) × ( Base ‘ ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ) ) ) = 𝑃 ) |
| 34 | 33 | fveq2d | ⊢ ( 𝜑 → ( MetOpen ‘ ( 𝑃 ↾ ( ( Base ‘ ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ) × ( Base ‘ ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ) ) ) ) = ( MetOpen ‘ 𝑃 ) ) |
| 35 | 28 34 | eqtr2d | ⊢ ( 𝜑 → ( MetOpen ‘ 𝑃 ) = ( TopOpen ‘ ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ) ) |
| 36 | 6 35 | eqtrid | ⊢ ( 𝜑 → 𝐿 = ( TopOpen ‘ ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ) ) |
| 37 | 7 4 | tmstopn | ⊢ ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 = ( TopOpen ‘ ( toMetSp ‘ 𝑀 ) ) ) |
| 38 | 2 37 | syl | ⊢ ( 𝜑 → 𝐽 = ( TopOpen ‘ ( toMetSp ‘ 𝑀 ) ) ) |
| 39 | 12 5 | tmstopn | ⊢ ( 𝑁 ∈ ( ∞Met ‘ 𝑌 ) → 𝐾 = ( TopOpen ‘ ( toMetSp ‘ 𝑁 ) ) ) |
| 40 | 3 39 | syl | ⊢ ( 𝜑 → 𝐾 = ( TopOpen ‘ ( toMetSp ‘ 𝑁 ) ) ) |
| 41 | 38 40 | oveq12d | ⊢ ( 𝜑 → ( 𝐽 ×t 𝐾 ) = ( ( TopOpen ‘ ( toMetSp ‘ 𝑀 ) ) ×t ( TopOpen ‘ ( toMetSp ‘ 𝑁 ) ) ) ) |
| 42 | 22 36 41 | 3eqtr4d | ⊢ ( 𝜑 → 𝐿 = ( 𝐽 ×t 𝐾 ) ) |