This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the product of two metrics. (Contributed by Mario Carneiro, 2-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tmsxps.p | ⊢ 𝑃 = ( dist ‘ ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ) | |
| tmsxps.1 | ⊢ ( 𝜑 → 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ) | ||
| tmsxps.2 | ⊢ ( 𝜑 → 𝑁 ∈ ( ∞Met ‘ 𝑌 ) ) | ||
| tmsxpsval.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) | ||
| tmsxpsval.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑌 ) | ||
| tmsxpsval.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑋 ) | ||
| tmsxpsval.d | ⊢ ( 𝜑 → 𝐷 ∈ 𝑌 ) | ||
| Assertion | tmsxpsval2 | ⊢ ( 𝜑 → ( 〈 𝐴 , 𝐵 〉 𝑃 〈 𝐶 , 𝐷 〉 ) = if ( ( 𝐴 𝑀 𝐶 ) ≤ ( 𝐵 𝑁 𝐷 ) , ( 𝐵 𝑁 𝐷 ) , ( 𝐴 𝑀 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tmsxps.p | ⊢ 𝑃 = ( dist ‘ ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ) | |
| 2 | tmsxps.1 | ⊢ ( 𝜑 → 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ) | |
| 3 | tmsxps.2 | ⊢ ( 𝜑 → 𝑁 ∈ ( ∞Met ‘ 𝑌 ) ) | |
| 4 | tmsxpsval.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) | |
| 5 | tmsxpsval.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑌 ) | |
| 6 | tmsxpsval.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑋 ) | |
| 7 | tmsxpsval.d | ⊢ ( 𝜑 → 𝐷 ∈ 𝑌 ) | |
| 8 | 1 2 3 4 5 6 7 | tmsxpsval | ⊢ ( 𝜑 → ( 〈 𝐴 , 𝐵 〉 𝑃 〈 𝐶 , 𝐷 〉 ) = sup ( { ( 𝐴 𝑀 𝐶 ) , ( 𝐵 𝑁 𝐷 ) } , ℝ* , < ) ) |
| 9 | xrltso | ⊢ < Or ℝ* | |
| 10 | xmetcl | ⊢ ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐴 𝑀 𝐶 ) ∈ ℝ* ) | |
| 11 | 2 4 6 10 | syl3anc | ⊢ ( 𝜑 → ( 𝐴 𝑀 𝐶 ) ∈ ℝ* ) |
| 12 | xmetcl | ⊢ ( ( 𝑁 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝐵 ∈ 𝑌 ∧ 𝐷 ∈ 𝑌 ) → ( 𝐵 𝑁 𝐷 ) ∈ ℝ* ) | |
| 13 | 3 5 7 12 | syl3anc | ⊢ ( 𝜑 → ( 𝐵 𝑁 𝐷 ) ∈ ℝ* ) |
| 14 | suppr | ⊢ ( ( < Or ℝ* ∧ ( 𝐴 𝑀 𝐶 ) ∈ ℝ* ∧ ( 𝐵 𝑁 𝐷 ) ∈ ℝ* ) → sup ( { ( 𝐴 𝑀 𝐶 ) , ( 𝐵 𝑁 𝐷 ) } , ℝ* , < ) = if ( ( 𝐵 𝑁 𝐷 ) < ( 𝐴 𝑀 𝐶 ) , ( 𝐴 𝑀 𝐶 ) , ( 𝐵 𝑁 𝐷 ) ) ) | |
| 15 | 9 11 13 14 | mp3an2i | ⊢ ( 𝜑 → sup ( { ( 𝐴 𝑀 𝐶 ) , ( 𝐵 𝑁 𝐷 ) } , ℝ* , < ) = if ( ( 𝐵 𝑁 𝐷 ) < ( 𝐴 𝑀 𝐶 ) , ( 𝐴 𝑀 𝐶 ) , ( 𝐵 𝑁 𝐷 ) ) ) |
| 16 | xrltnle | ⊢ ( ( ( 𝐵 𝑁 𝐷 ) ∈ ℝ* ∧ ( 𝐴 𝑀 𝐶 ) ∈ ℝ* ) → ( ( 𝐵 𝑁 𝐷 ) < ( 𝐴 𝑀 𝐶 ) ↔ ¬ ( 𝐴 𝑀 𝐶 ) ≤ ( 𝐵 𝑁 𝐷 ) ) ) | |
| 17 | 13 11 16 | syl2anc | ⊢ ( 𝜑 → ( ( 𝐵 𝑁 𝐷 ) < ( 𝐴 𝑀 𝐶 ) ↔ ¬ ( 𝐴 𝑀 𝐶 ) ≤ ( 𝐵 𝑁 𝐷 ) ) ) |
| 18 | 17 | ifbid | ⊢ ( 𝜑 → if ( ( 𝐵 𝑁 𝐷 ) < ( 𝐴 𝑀 𝐶 ) , ( 𝐴 𝑀 𝐶 ) , ( 𝐵 𝑁 𝐷 ) ) = if ( ¬ ( 𝐴 𝑀 𝐶 ) ≤ ( 𝐵 𝑁 𝐷 ) , ( 𝐴 𝑀 𝐶 ) , ( 𝐵 𝑁 𝐷 ) ) ) |
| 19 | ifnot | ⊢ if ( ¬ ( 𝐴 𝑀 𝐶 ) ≤ ( 𝐵 𝑁 𝐷 ) , ( 𝐴 𝑀 𝐶 ) , ( 𝐵 𝑁 𝐷 ) ) = if ( ( 𝐴 𝑀 𝐶 ) ≤ ( 𝐵 𝑁 𝐷 ) , ( 𝐵 𝑁 𝐷 ) , ( 𝐴 𝑀 𝐶 ) ) | |
| 20 | 18 19 | eqtrdi | ⊢ ( 𝜑 → if ( ( 𝐵 𝑁 𝐷 ) < ( 𝐴 𝑀 𝐶 ) , ( 𝐴 𝑀 𝐶 ) , ( 𝐵 𝑁 𝐷 ) ) = if ( ( 𝐴 𝑀 𝐶 ) ≤ ( 𝐵 𝑁 𝐷 ) , ( 𝐵 𝑁 𝐷 ) , ( 𝐴 𝑀 𝐶 ) ) ) |
| 21 | 8 15 20 | 3eqtrd | ⊢ ( 𝜑 → ( 〈 𝐴 , 𝐵 〉 𝑃 〈 𝐶 , 𝐷 〉 ) = if ( ( 𝐴 𝑀 𝐶 ) ≤ ( 𝐵 𝑁 𝐷 ) , ( 𝐵 𝑁 𝐷 ) , ( 𝐴 𝑀 𝐶 ) ) ) |