This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Express the product of two metrics as another metric. (Contributed by Mario Carneiro, 2-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tmsxps.p | ⊢ 𝑃 = ( dist ‘ ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ) | |
| tmsxps.1 | ⊢ ( 𝜑 → 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ) | ||
| tmsxps.2 | ⊢ ( 𝜑 → 𝑁 ∈ ( ∞Met ‘ 𝑌 ) ) | ||
| Assertion | tmsxps | ⊢ ( 𝜑 → 𝑃 ∈ ( ∞Met ‘ ( 𝑋 × 𝑌 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tmsxps.p | ⊢ 𝑃 = ( dist ‘ ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ) | |
| 2 | tmsxps.1 | ⊢ ( 𝜑 → 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ) | |
| 3 | tmsxps.2 | ⊢ ( 𝜑 → 𝑁 ∈ ( ∞Met ‘ 𝑌 ) ) | |
| 4 | eqid | ⊢ ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) = ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) | |
| 5 | eqid | ⊢ ( Base ‘ ( toMetSp ‘ 𝑀 ) ) = ( Base ‘ ( toMetSp ‘ 𝑀 ) ) | |
| 6 | eqid | ⊢ ( Base ‘ ( toMetSp ‘ 𝑁 ) ) = ( Base ‘ ( toMetSp ‘ 𝑁 ) ) | |
| 7 | eqid | ⊢ ( toMetSp ‘ 𝑀 ) = ( toMetSp ‘ 𝑀 ) | |
| 8 | 7 | tmsxms | ⊢ ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) → ( toMetSp ‘ 𝑀 ) ∈ ∞MetSp ) |
| 9 | 2 8 | syl | ⊢ ( 𝜑 → ( toMetSp ‘ 𝑀 ) ∈ ∞MetSp ) |
| 10 | eqid | ⊢ ( toMetSp ‘ 𝑁 ) = ( toMetSp ‘ 𝑁 ) | |
| 11 | 10 | tmsxms | ⊢ ( 𝑁 ∈ ( ∞Met ‘ 𝑌 ) → ( toMetSp ‘ 𝑁 ) ∈ ∞MetSp ) |
| 12 | 3 11 | syl | ⊢ ( 𝜑 → ( toMetSp ‘ 𝑁 ) ∈ ∞MetSp ) |
| 13 | 4 5 6 9 12 1 | xpsdsfn2 | ⊢ ( 𝜑 → 𝑃 Fn ( ( Base ‘ ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ) × ( Base ‘ ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ) ) ) |
| 14 | fnresdm | ⊢ ( 𝑃 Fn ( ( Base ‘ ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ) × ( Base ‘ ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ) ) → ( 𝑃 ↾ ( ( Base ‘ ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ) × ( Base ‘ ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ) ) ) = 𝑃 ) | |
| 15 | 13 14 | syl | ⊢ ( 𝜑 → ( 𝑃 ↾ ( ( Base ‘ ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ) × ( Base ‘ ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ) ) ) = 𝑃 ) |
| 16 | 4 | xpsxms | ⊢ ( ( ( toMetSp ‘ 𝑀 ) ∈ ∞MetSp ∧ ( toMetSp ‘ 𝑁 ) ∈ ∞MetSp ) → ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ∈ ∞MetSp ) |
| 17 | 9 12 16 | syl2anc | ⊢ ( 𝜑 → ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ∈ ∞MetSp ) |
| 18 | eqid | ⊢ ( Base ‘ ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ) = ( Base ‘ ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ) | |
| 19 | 18 1 | xmsxmet2 | ⊢ ( ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ∈ ∞MetSp → ( 𝑃 ↾ ( ( Base ‘ ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ) × ( Base ‘ ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ) ) ) ∈ ( ∞Met ‘ ( Base ‘ ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ) ) ) |
| 20 | 17 19 | syl | ⊢ ( 𝜑 → ( 𝑃 ↾ ( ( Base ‘ ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ) × ( Base ‘ ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ) ) ) ∈ ( ∞Met ‘ ( Base ‘ ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ) ) ) |
| 21 | 15 20 | eqeltrrd | ⊢ ( 𝜑 → 𝑃 ∈ ( ∞Met ‘ ( Base ‘ ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ) ) ) |
| 22 | 7 | tmsbas | ⊢ ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) → 𝑋 = ( Base ‘ ( toMetSp ‘ 𝑀 ) ) ) |
| 23 | 2 22 | syl | ⊢ ( 𝜑 → 𝑋 = ( Base ‘ ( toMetSp ‘ 𝑀 ) ) ) |
| 24 | 10 | tmsbas | ⊢ ( 𝑁 ∈ ( ∞Met ‘ 𝑌 ) → 𝑌 = ( Base ‘ ( toMetSp ‘ 𝑁 ) ) ) |
| 25 | 3 24 | syl | ⊢ ( 𝜑 → 𝑌 = ( Base ‘ ( toMetSp ‘ 𝑁 ) ) ) |
| 26 | 23 25 | xpeq12d | ⊢ ( 𝜑 → ( 𝑋 × 𝑌 ) = ( ( Base ‘ ( toMetSp ‘ 𝑀 ) ) × ( Base ‘ ( toMetSp ‘ 𝑁 ) ) ) ) |
| 27 | 4 5 6 9 12 | xpsbas | ⊢ ( 𝜑 → ( ( Base ‘ ( toMetSp ‘ 𝑀 ) ) × ( Base ‘ ( toMetSp ‘ 𝑁 ) ) ) = ( Base ‘ ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ) ) |
| 28 | 26 27 | eqtrd | ⊢ ( 𝜑 → ( 𝑋 × 𝑌 ) = ( Base ‘ ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ) ) |
| 29 | 28 | fveq2d | ⊢ ( 𝜑 → ( ∞Met ‘ ( 𝑋 × 𝑌 ) ) = ( ∞Met ‘ ( Base ‘ ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ) ) ) |
| 30 | 21 29 | eleqtrrd | ⊢ ( 𝜑 → 𝑃 ∈ ( ∞Met ‘ ( 𝑋 × 𝑌 ) ) ) |