This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The topological product of indiscrete spaces is indiscrete. (Contributed by Mario Carneiro, 14-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | txindis | ⊢ ( { ∅ , 𝐴 } ×t { ∅ , 𝐵 } ) = { ∅ , ( 𝐴 × 𝐵 ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neq0 | ⊢ ( ¬ 𝑥 = ∅ ↔ ∃ 𝑦 𝑦 ∈ 𝑥 ) | |
| 2 | indistop | ⊢ { ∅ , 𝐴 } ∈ Top | |
| 3 | indistop | ⊢ { ∅ , 𝐵 } ∈ Top | |
| 4 | eltx | ⊢ ( ( { ∅ , 𝐴 } ∈ Top ∧ { ∅ , 𝐵 } ∈ Top ) → ( 𝑥 ∈ ( { ∅ , 𝐴 } ×t { ∅ , 𝐵 } ) ↔ ∀ 𝑦 ∈ 𝑥 ∃ 𝑧 ∈ { ∅ , 𝐴 } ∃ 𝑤 ∈ { ∅ , 𝐵 } ( 𝑦 ∈ ( 𝑧 × 𝑤 ) ∧ ( 𝑧 × 𝑤 ) ⊆ 𝑥 ) ) ) | |
| 5 | 2 3 4 | mp2an | ⊢ ( 𝑥 ∈ ( { ∅ , 𝐴 } ×t { ∅ , 𝐵 } ) ↔ ∀ 𝑦 ∈ 𝑥 ∃ 𝑧 ∈ { ∅ , 𝐴 } ∃ 𝑤 ∈ { ∅ , 𝐵 } ( 𝑦 ∈ ( 𝑧 × 𝑤 ) ∧ ( 𝑧 × 𝑤 ) ⊆ 𝑥 ) ) |
| 6 | rsp | ⊢ ( ∀ 𝑦 ∈ 𝑥 ∃ 𝑧 ∈ { ∅ , 𝐴 } ∃ 𝑤 ∈ { ∅ , 𝐵 } ( 𝑦 ∈ ( 𝑧 × 𝑤 ) ∧ ( 𝑧 × 𝑤 ) ⊆ 𝑥 ) → ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ∈ { ∅ , 𝐴 } ∃ 𝑤 ∈ { ∅ , 𝐵 } ( 𝑦 ∈ ( 𝑧 × 𝑤 ) ∧ ( 𝑧 × 𝑤 ) ⊆ 𝑥 ) ) ) | |
| 7 | 5 6 | sylbi | ⊢ ( 𝑥 ∈ ( { ∅ , 𝐴 } ×t { ∅ , 𝐵 } ) → ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ∈ { ∅ , 𝐴 } ∃ 𝑤 ∈ { ∅ , 𝐵 } ( 𝑦 ∈ ( 𝑧 × 𝑤 ) ∧ ( 𝑧 × 𝑤 ) ⊆ 𝑥 ) ) ) |
| 8 | elssuni | ⊢ ( 𝑥 ∈ ( { ∅ , 𝐴 } ×t { ∅ , 𝐵 } ) → 𝑥 ⊆ ∪ ( { ∅ , 𝐴 } ×t { ∅ , 𝐵 } ) ) | |
| 9 | indisuni | ⊢ ( I ‘ 𝐴 ) = ∪ { ∅ , 𝐴 } | |
| 10 | indisuni | ⊢ ( I ‘ 𝐵 ) = ∪ { ∅ , 𝐵 } | |
| 11 | 2 3 9 10 | txunii | ⊢ ( ( I ‘ 𝐴 ) × ( I ‘ 𝐵 ) ) = ∪ ( { ∅ , 𝐴 } ×t { ∅ , 𝐵 } ) |
| 12 | 8 11 | sseqtrrdi | ⊢ ( 𝑥 ∈ ( { ∅ , 𝐴 } ×t { ∅ , 𝐵 } ) → 𝑥 ⊆ ( ( I ‘ 𝐴 ) × ( I ‘ 𝐵 ) ) ) |
| 13 | 12 | ad2antrr | ⊢ ( ( ( 𝑥 ∈ ( { ∅ , 𝐴 } ×t { ∅ , 𝐵 } ) ∧ ( 𝑧 ∈ { ∅ , 𝐴 } ∧ 𝑤 ∈ { ∅ , 𝐵 } ) ) ∧ ( 𝑦 ∈ ( 𝑧 × 𝑤 ) ∧ ( 𝑧 × 𝑤 ) ⊆ 𝑥 ) ) → 𝑥 ⊆ ( ( I ‘ 𝐴 ) × ( I ‘ 𝐵 ) ) ) |
| 14 | ne0i | ⊢ ( 𝑦 ∈ ( 𝑧 × 𝑤 ) → ( 𝑧 × 𝑤 ) ≠ ∅ ) | |
| 15 | 14 | ad2antrl | ⊢ ( ( ( 𝑧 ∈ { ∅ , 𝐴 } ∧ 𝑤 ∈ { ∅ , 𝐵 } ) ∧ ( 𝑦 ∈ ( 𝑧 × 𝑤 ) ∧ ( 𝑧 × 𝑤 ) ⊆ 𝑥 ) ) → ( 𝑧 × 𝑤 ) ≠ ∅ ) |
| 16 | xpnz | ⊢ ( ( 𝑧 ≠ ∅ ∧ 𝑤 ≠ ∅ ) ↔ ( 𝑧 × 𝑤 ) ≠ ∅ ) | |
| 17 | 15 16 | sylibr | ⊢ ( ( ( 𝑧 ∈ { ∅ , 𝐴 } ∧ 𝑤 ∈ { ∅ , 𝐵 } ) ∧ ( 𝑦 ∈ ( 𝑧 × 𝑤 ) ∧ ( 𝑧 × 𝑤 ) ⊆ 𝑥 ) ) → ( 𝑧 ≠ ∅ ∧ 𝑤 ≠ ∅ ) ) |
| 18 | 17 | simpld | ⊢ ( ( ( 𝑧 ∈ { ∅ , 𝐴 } ∧ 𝑤 ∈ { ∅ , 𝐵 } ) ∧ ( 𝑦 ∈ ( 𝑧 × 𝑤 ) ∧ ( 𝑧 × 𝑤 ) ⊆ 𝑥 ) ) → 𝑧 ≠ ∅ ) |
| 19 | 18 | neneqd | ⊢ ( ( ( 𝑧 ∈ { ∅ , 𝐴 } ∧ 𝑤 ∈ { ∅ , 𝐵 } ) ∧ ( 𝑦 ∈ ( 𝑧 × 𝑤 ) ∧ ( 𝑧 × 𝑤 ) ⊆ 𝑥 ) ) → ¬ 𝑧 = ∅ ) |
| 20 | simpll | ⊢ ( ( ( 𝑧 ∈ { ∅ , 𝐴 } ∧ 𝑤 ∈ { ∅ , 𝐵 } ) ∧ ( 𝑦 ∈ ( 𝑧 × 𝑤 ) ∧ ( 𝑧 × 𝑤 ) ⊆ 𝑥 ) ) → 𝑧 ∈ { ∅ , 𝐴 } ) | |
| 21 | indislem | ⊢ { ∅ , ( I ‘ 𝐴 ) } = { ∅ , 𝐴 } | |
| 22 | 20 21 | eleqtrrdi | ⊢ ( ( ( 𝑧 ∈ { ∅ , 𝐴 } ∧ 𝑤 ∈ { ∅ , 𝐵 } ) ∧ ( 𝑦 ∈ ( 𝑧 × 𝑤 ) ∧ ( 𝑧 × 𝑤 ) ⊆ 𝑥 ) ) → 𝑧 ∈ { ∅ , ( I ‘ 𝐴 ) } ) |
| 23 | elpri | ⊢ ( 𝑧 ∈ { ∅ , ( I ‘ 𝐴 ) } → ( 𝑧 = ∅ ∨ 𝑧 = ( I ‘ 𝐴 ) ) ) | |
| 24 | 22 23 | syl | ⊢ ( ( ( 𝑧 ∈ { ∅ , 𝐴 } ∧ 𝑤 ∈ { ∅ , 𝐵 } ) ∧ ( 𝑦 ∈ ( 𝑧 × 𝑤 ) ∧ ( 𝑧 × 𝑤 ) ⊆ 𝑥 ) ) → ( 𝑧 = ∅ ∨ 𝑧 = ( I ‘ 𝐴 ) ) ) |
| 25 | 24 | ord | ⊢ ( ( ( 𝑧 ∈ { ∅ , 𝐴 } ∧ 𝑤 ∈ { ∅ , 𝐵 } ) ∧ ( 𝑦 ∈ ( 𝑧 × 𝑤 ) ∧ ( 𝑧 × 𝑤 ) ⊆ 𝑥 ) ) → ( ¬ 𝑧 = ∅ → 𝑧 = ( I ‘ 𝐴 ) ) ) |
| 26 | 19 25 | mpd | ⊢ ( ( ( 𝑧 ∈ { ∅ , 𝐴 } ∧ 𝑤 ∈ { ∅ , 𝐵 } ) ∧ ( 𝑦 ∈ ( 𝑧 × 𝑤 ) ∧ ( 𝑧 × 𝑤 ) ⊆ 𝑥 ) ) → 𝑧 = ( I ‘ 𝐴 ) ) |
| 27 | 17 | simprd | ⊢ ( ( ( 𝑧 ∈ { ∅ , 𝐴 } ∧ 𝑤 ∈ { ∅ , 𝐵 } ) ∧ ( 𝑦 ∈ ( 𝑧 × 𝑤 ) ∧ ( 𝑧 × 𝑤 ) ⊆ 𝑥 ) ) → 𝑤 ≠ ∅ ) |
| 28 | 27 | neneqd | ⊢ ( ( ( 𝑧 ∈ { ∅ , 𝐴 } ∧ 𝑤 ∈ { ∅ , 𝐵 } ) ∧ ( 𝑦 ∈ ( 𝑧 × 𝑤 ) ∧ ( 𝑧 × 𝑤 ) ⊆ 𝑥 ) ) → ¬ 𝑤 = ∅ ) |
| 29 | simplr | ⊢ ( ( ( 𝑧 ∈ { ∅ , 𝐴 } ∧ 𝑤 ∈ { ∅ , 𝐵 } ) ∧ ( 𝑦 ∈ ( 𝑧 × 𝑤 ) ∧ ( 𝑧 × 𝑤 ) ⊆ 𝑥 ) ) → 𝑤 ∈ { ∅ , 𝐵 } ) | |
| 30 | indislem | ⊢ { ∅ , ( I ‘ 𝐵 ) } = { ∅ , 𝐵 } | |
| 31 | 29 30 | eleqtrrdi | ⊢ ( ( ( 𝑧 ∈ { ∅ , 𝐴 } ∧ 𝑤 ∈ { ∅ , 𝐵 } ) ∧ ( 𝑦 ∈ ( 𝑧 × 𝑤 ) ∧ ( 𝑧 × 𝑤 ) ⊆ 𝑥 ) ) → 𝑤 ∈ { ∅ , ( I ‘ 𝐵 ) } ) |
| 32 | elpri | ⊢ ( 𝑤 ∈ { ∅ , ( I ‘ 𝐵 ) } → ( 𝑤 = ∅ ∨ 𝑤 = ( I ‘ 𝐵 ) ) ) | |
| 33 | 31 32 | syl | ⊢ ( ( ( 𝑧 ∈ { ∅ , 𝐴 } ∧ 𝑤 ∈ { ∅ , 𝐵 } ) ∧ ( 𝑦 ∈ ( 𝑧 × 𝑤 ) ∧ ( 𝑧 × 𝑤 ) ⊆ 𝑥 ) ) → ( 𝑤 = ∅ ∨ 𝑤 = ( I ‘ 𝐵 ) ) ) |
| 34 | 33 | ord | ⊢ ( ( ( 𝑧 ∈ { ∅ , 𝐴 } ∧ 𝑤 ∈ { ∅ , 𝐵 } ) ∧ ( 𝑦 ∈ ( 𝑧 × 𝑤 ) ∧ ( 𝑧 × 𝑤 ) ⊆ 𝑥 ) ) → ( ¬ 𝑤 = ∅ → 𝑤 = ( I ‘ 𝐵 ) ) ) |
| 35 | 28 34 | mpd | ⊢ ( ( ( 𝑧 ∈ { ∅ , 𝐴 } ∧ 𝑤 ∈ { ∅ , 𝐵 } ) ∧ ( 𝑦 ∈ ( 𝑧 × 𝑤 ) ∧ ( 𝑧 × 𝑤 ) ⊆ 𝑥 ) ) → 𝑤 = ( I ‘ 𝐵 ) ) |
| 36 | 26 35 | xpeq12d | ⊢ ( ( ( 𝑧 ∈ { ∅ , 𝐴 } ∧ 𝑤 ∈ { ∅ , 𝐵 } ) ∧ ( 𝑦 ∈ ( 𝑧 × 𝑤 ) ∧ ( 𝑧 × 𝑤 ) ⊆ 𝑥 ) ) → ( 𝑧 × 𝑤 ) = ( ( I ‘ 𝐴 ) × ( I ‘ 𝐵 ) ) ) |
| 37 | simprr | ⊢ ( ( ( 𝑧 ∈ { ∅ , 𝐴 } ∧ 𝑤 ∈ { ∅ , 𝐵 } ) ∧ ( 𝑦 ∈ ( 𝑧 × 𝑤 ) ∧ ( 𝑧 × 𝑤 ) ⊆ 𝑥 ) ) → ( 𝑧 × 𝑤 ) ⊆ 𝑥 ) | |
| 38 | 36 37 | eqsstrrd | ⊢ ( ( ( 𝑧 ∈ { ∅ , 𝐴 } ∧ 𝑤 ∈ { ∅ , 𝐵 } ) ∧ ( 𝑦 ∈ ( 𝑧 × 𝑤 ) ∧ ( 𝑧 × 𝑤 ) ⊆ 𝑥 ) ) → ( ( I ‘ 𝐴 ) × ( I ‘ 𝐵 ) ) ⊆ 𝑥 ) |
| 39 | 38 | adantll | ⊢ ( ( ( 𝑥 ∈ ( { ∅ , 𝐴 } ×t { ∅ , 𝐵 } ) ∧ ( 𝑧 ∈ { ∅ , 𝐴 } ∧ 𝑤 ∈ { ∅ , 𝐵 } ) ) ∧ ( 𝑦 ∈ ( 𝑧 × 𝑤 ) ∧ ( 𝑧 × 𝑤 ) ⊆ 𝑥 ) ) → ( ( I ‘ 𝐴 ) × ( I ‘ 𝐵 ) ) ⊆ 𝑥 ) |
| 40 | 13 39 | eqssd | ⊢ ( ( ( 𝑥 ∈ ( { ∅ , 𝐴 } ×t { ∅ , 𝐵 } ) ∧ ( 𝑧 ∈ { ∅ , 𝐴 } ∧ 𝑤 ∈ { ∅ , 𝐵 } ) ) ∧ ( 𝑦 ∈ ( 𝑧 × 𝑤 ) ∧ ( 𝑧 × 𝑤 ) ⊆ 𝑥 ) ) → 𝑥 = ( ( I ‘ 𝐴 ) × ( I ‘ 𝐵 ) ) ) |
| 41 | 40 | ex | ⊢ ( ( 𝑥 ∈ ( { ∅ , 𝐴 } ×t { ∅ , 𝐵 } ) ∧ ( 𝑧 ∈ { ∅ , 𝐴 } ∧ 𝑤 ∈ { ∅ , 𝐵 } ) ) → ( ( 𝑦 ∈ ( 𝑧 × 𝑤 ) ∧ ( 𝑧 × 𝑤 ) ⊆ 𝑥 ) → 𝑥 = ( ( I ‘ 𝐴 ) × ( I ‘ 𝐵 ) ) ) ) |
| 42 | 41 | rexlimdvva | ⊢ ( 𝑥 ∈ ( { ∅ , 𝐴 } ×t { ∅ , 𝐵 } ) → ( ∃ 𝑧 ∈ { ∅ , 𝐴 } ∃ 𝑤 ∈ { ∅ , 𝐵 } ( 𝑦 ∈ ( 𝑧 × 𝑤 ) ∧ ( 𝑧 × 𝑤 ) ⊆ 𝑥 ) → 𝑥 = ( ( I ‘ 𝐴 ) × ( I ‘ 𝐵 ) ) ) ) |
| 43 | 7 42 | syld | ⊢ ( 𝑥 ∈ ( { ∅ , 𝐴 } ×t { ∅ , 𝐵 } ) → ( 𝑦 ∈ 𝑥 → 𝑥 = ( ( I ‘ 𝐴 ) × ( I ‘ 𝐵 ) ) ) ) |
| 44 | 43 | exlimdv | ⊢ ( 𝑥 ∈ ( { ∅ , 𝐴 } ×t { ∅ , 𝐵 } ) → ( ∃ 𝑦 𝑦 ∈ 𝑥 → 𝑥 = ( ( I ‘ 𝐴 ) × ( I ‘ 𝐵 ) ) ) ) |
| 45 | 1 44 | biimtrid | ⊢ ( 𝑥 ∈ ( { ∅ , 𝐴 } ×t { ∅ , 𝐵 } ) → ( ¬ 𝑥 = ∅ → 𝑥 = ( ( I ‘ 𝐴 ) × ( I ‘ 𝐵 ) ) ) ) |
| 46 | 45 | orrd | ⊢ ( 𝑥 ∈ ( { ∅ , 𝐴 } ×t { ∅ , 𝐵 } ) → ( 𝑥 = ∅ ∨ 𝑥 = ( ( I ‘ 𝐴 ) × ( I ‘ 𝐵 ) ) ) ) |
| 47 | vex | ⊢ 𝑥 ∈ V | |
| 48 | 47 | elpr | ⊢ ( 𝑥 ∈ { ∅ , ( ( I ‘ 𝐴 ) × ( I ‘ 𝐵 ) ) } ↔ ( 𝑥 = ∅ ∨ 𝑥 = ( ( I ‘ 𝐴 ) × ( I ‘ 𝐵 ) ) ) ) |
| 49 | 46 48 | sylibr | ⊢ ( 𝑥 ∈ ( { ∅ , 𝐴 } ×t { ∅ , 𝐵 } ) → 𝑥 ∈ { ∅ , ( ( I ‘ 𝐴 ) × ( I ‘ 𝐵 ) ) } ) |
| 50 | 49 | ssriv | ⊢ ( { ∅ , 𝐴 } ×t { ∅ , 𝐵 } ) ⊆ { ∅ , ( ( I ‘ 𝐴 ) × ( I ‘ 𝐵 ) ) } |
| 51 | 9 | toptopon | ⊢ ( { ∅ , 𝐴 } ∈ Top ↔ { ∅ , 𝐴 } ∈ ( TopOn ‘ ( I ‘ 𝐴 ) ) ) |
| 52 | 2 51 | mpbi | ⊢ { ∅ , 𝐴 } ∈ ( TopOn ‘ ( I ‘ 𝐴 ) ) |
| 53 | 10 | toptopon | ⊢ ( { ∅ , 𝐵 } ∈ Top ↔ { ∅ , 𝐵 } ∈ ( TopOn ‘ ( I ‘ 𝐵 ) ) ) |
| 54 | 3 53 | mpbi | ⊢ { ∅ , 𝐵 } ∈ ( TopOn ‘ ( I ‘ 𝐵 ) ) |
| 55 | txtopon | ⊢ ( ( { ∅ , 𝐴 } ∈ ( TopOn ‘ ( I ‘ 𝐴 ) ) ∧ { ∅ , 𝐵 } ∈ ( TopOn ‘ ( I ‘ 𝐵 ) ) ) → ( { ∅ , 𝐴 } ×t { ∅ , 𝐵 } ) ∈ ( TopOn ‘ ( ( I ‘ 𝐴 ) × ( I ‘ 𝐵 ) ) ) ) | |
| 56 | 52 54 55 | mp2an | ⊢ ( { ∅ , 𝐴 } ×t { ∅ , 𝐵 } ) ∈ ( TopOn ‘ ( ( I ‘ 𝐴 ) × ( I ‘ 𝐵 ) ) ) |
| 57 | topgele | ⊢ ( ( { ∅ , 𝐴 } ×t { ∅ , 𝐵 } ) ∈ ( TopOn ‘ ( ( I ‘ 𝐴 ) × ( I ‘ 𝐵 ) ) ) → ( { ∅ , ( ( I ‘ 𝐴 ) × ( I ‘ 𝐵 ) ) } ⊆ ( { ∅ , 𝐴 } ×t { ∅ , 𝐵 } ) ∧ ( { ∅ , 𝐴 } ×t { ∅ , 𝐵 } ) ⊆ 𝒫 ( ( I ‘ 𝐴 ) × ( I ‘ 𝐵 ) ) ) ) | |
| 58 | 56 57 | ax-mp | ⊢ ( { ∅ , ( ( I ‘ 𝐴 ) × ( I ‘ 𝐵 ) ) } ⊆ ( { ∅ , 𝐴 } ×t { ∅ , 𝐵 } ) ∧ ( { ∅ , 𝐴 } ×t { ∅ , 𝐵 } ) ⊆ 𝒫 ( ( I ‘ 𝐴 ) × ( I ‘ 𝐵 ) ) ) |
| 59 | 58 | simpli | ⊢ { ∅ , ( ( I ‘ 𝐴 ) × ( I ‘ 𝐵 ) ) } ⊆ ( { ∅ , 𝐴 } ×t { ∅ , 𝐵 } ) |
| 60 | 50 59 | eqssi | ⊢ ( { ∅ , 𝐴 } ×t { ∅ , 𝐵 } ) = { ∅ , ( ( I ‘ 𝐴 ) × ( I ‘ 𝐵 ) ) } |
| 61 | txindislem | ⊢ ( ( I ‘ 𝐴 ) × ( I ‘ 𝐵 ) ) = ( I ‘ ( 𝐴 × 𝐵 ) ) | |
| 62 | 61 | preq2i | ⊢ { ∅ , ( ( I ‘ 𝐴 ) × ( I ‘ 𝐵 ) ) } = { ∅ , ( I ‘ ( 𝐴 × 𝐵 ) ) } |
| 63 | indislem | ⊢ { ∅ , ( I ‘ ( 𝐴 × 𝐵 ) ) } = { ∅ , ( 𝐴 × 𝐵 ) } | |
| 64 | 60 62 63 | 3eqtri | ⊢ ( { ∅ , 𝐴 } ×t { ∅ , 𝐵 } ) = { ∅ , ( 𝐴 × 𝐵 ) } |