This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The topological product of indiscrete spaces is indiscrete. (Contributed by Mario Carneiro, 14-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | txindis | |- ( { (/) , A } tX { (/) , B } ) = { (/) , ( A X. B ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neq0 | |- ( -. x = (/) <-> E. y y e. x ) |
|
| 2 | indistop | |- { (/) , A } e. Top |
|
| 3 | indistop | |- { (/) , B } e. Top |
|
| 4 | eltx | |- ( ( { (/) , A } e. Top /\ { (/) , B } e. Top ) -> ( x e. ( { (/) , A } tX { (/) , B } ) <-> A. y e. x E. z e. { (/) , A } E. w e. { (/) , B } ( y e. ( z X. w ) /\ ( z X. w ) C_ x ) ) ) |
|
| 5 | 2 3 4 | mp2an | |- ( x e. ( { (/) , A } tX { (/) , B } ) <-> A. y e. x E. z e. { (/) , A } E. w e. { (/) , B } ( y e. ( z X. w ) /\ ( z X. w ) C_ x ) ) |
| 6 | rsp | |- ( A. y e. x E. z e. { (/) , A } E. w e. { (/) , B } ( y e. ( z X. w ) /\ ( z X. w ) C_ x ) -> ( y e. x -> E. z e. { (/) , A } E. w e. { (/) , B } ( y e. ( z X. w ) /\ ( z X. w ) C_ x ) ) ) |
|
| 7 | 5 6 | sylbi | |- ( x e. ( { (/) , A } tX { (/) , B } ) -> ( y e. x -> E. z e. { (/) , A } E. w e. { (/) , B } ( y e. ( z X. w ) /\ ( z X. w ) C_ x ) ) ) |
| 8 | elssuni | |- ( x e. ( { (/) , A } tX { (/) , B } ) -> x C_ U. ( { (/) , A } tX { (/) , B } ) ) |
|
| 9 | indisuni | |- ( _I ` A ) = U. { (/) , A } |
|
| 10 | indisuni | |- ( _I ` B ) = U. { (/) , B } |
|
| 11 | 2 3 9 10 | txunii | |- ( ( _I ` A ) X. ( _I ` B ) ) = U. ( { (/) , A } tX { (/) , B } ) |
| 12 | 8 11 | sseqtrrdi | |- ( x e. ( { (/) , A } tX { (/) , B } ) -> x C_ ( ( _I ` A ) X. ( _I ` B ) ) ) |
| 13 | 12 | ad2antrr | |- ( ( ( x e. ( { (/) , A } tX { (/) , B } ) /\ ( z e. { (/) , A } /\ w e. { (/) , B } ) ) /\ ( y e. ( z X. w ) /\ ( z X. w ) C_ x ) ) -> x C_ ( ( _I ` A ) X. ( _I ` B ) ) ) |
| 14 | ne0i | |- ( y e. ( z X. w ) -> ( z X. w ) =/= (/) ) |
|
| 15 | 14 | ad2antrl | |- ( ( ( z e. { (/) , A } /\ w e. { (/) , B } ) /\ ( y e. ( z X. w ) /\ ( z X. w ) C_ x ) ) -> ( z X. w ) =/= (/) ) |
| 16 | xpnz | |- ( ( z =/= (/) /\ w =/= (/) ) <-> ( z X. w ) =/= (/) ) |
|
| 17 | 15 16 | sylibr | |- ( ( ( z e. { (/) , A } /\ w e. { (/) , B } ) /\ ( y e. ( z X. w ) /\ ( z X. w ) C_ x ) ) -> ( z =/= (/) /\ w =/= (/) ) ) |
| 18 | 17 | simpld | |- ( ( ( z e. { (/) , A } /\ w e. { (/) , B } ) /\ ( y e. ( z X. w ) /\ ( z X. w ) C_ x ) ) -> z =/= (/) ) |
| 19 | 18 | neneqd | |- ( ( ( z e. { (/) , A } /\ w e. { (/) , B } ) /\ ( y e. ( z X. w ) /\ ( z X. w ) C_ x ) ) -> -. z = (/) ) |
| 20 | simpll | |- ( ( ( z e. { (/) , A } /\ w e. { (/) , B } ) /\ ( y e. ( z X. w ) /\ ( z X. w ) C_ x ) ) -> z e. { (/) , A } ) |
|
| 21 | indislem | |- { (/) , ( _I ` A ) } = { (/) , A } |
|
| 22 | 20 21 | eleqtrrdi | |- ( ( ( z e. { (/) , A } /\ w e. { (/) , B } ) /\ ( y e. ( z X. w ) /\ ( z X. w ) C_ x ) ) -> z e. { (/) , ( _I ` A ) } ) |
| 23 | elpri | |- ( z e. { (/) , ( _I ` A ) } -> ( z = (/) \/ z = ( _I ` A ) ) ) |
|
| 24 | 22 23 | syl | |- ( ( ( z e. { (/) , A } /\ w e. { (/) , B } ) /\ ( y e. ( z X. w ) /\ ( z X. w ) C_ x ) ) -> ( z = (/) \/ z = ( _I ` A ) ) ) |
| 25 | 24 | ord | |- ( ( ( z e. { (/) , A } /\ w e. { (/) , B } ) /\ ( y e. ( z X. w ) /\ ( z X. w ) C_ x ) ) -> ( -. z = (/) -> z = ( _I ` A ) ) ) |
| 26 | 19 25 | mpd | |- ( ( ( z e. { (/) , A } /\ w e. { (/) , B } ) /\ ( y e. ( z X. w ) /\ ( z X. w ) C_ x ) ) -> z = ( _I ` A ) ) |
| 27 | 17 | simprd | |- ( ( ( z e. { (/) , A } /\ w e. { (/) , B } ) /\ ( y e. ( z X. w ) /\ ( z X. w ) C_ x ) ) -> w =/= (/) ) |
| 28 | 27 | neneqd | |- ( ( ( z e. { (/) , A } /\ w e. { (/) , B } ) /\ ( y e. ( z X. w ) /\ ( z X. w ) C_ x ) ) -> -. w = (/) ) |
| 29 | simplr | |- ( ( ( z e. { (/) , A } /\ w e. { (/) , B } ) /\ ( y e. ( z X. w ) /\ ( z X. w ) C_ x ) ) -> w e. { (/) , B } ) |
|
| 30 | indislem | |- { (/) , ( _I ` B ) } = { (/) , B } |
|
| 31 | 29 30 | eleqtrrdi | |- ( ( ( z e. { (/) , A } /\ w e. { (/) , B } ) /\ ( y e. ( z X. w ) /\ ( z X. w ) C_ x ) ) -> w e. { (/) , ( _I ` B ) } ) |
| 32 | elpri | |- ( w e. { (/) , ( _I ` B ) } -> ( w = (/) \/ w = ( _I ` B ) ) ) |
|
| 33 | 31 32 | syl | |- ( ( ( z e. { (/) , A } /\ w e. { (/) , B } ) /\ ( y e. ( z X. w ) /\ ( z X. w ) C_ x ) ) -> ( w = (/) \/ w = ( _I ` B ) ) ) |
| 34 | 33 | ord | |- ( ( ( z e. { (/) , A } /\ w e. { (/) , B } ) /\ ( y e. ( z X. w ) /\ ( z X. w ) C_ x ) ) -> ( -. w = (/) -> w = ( _I ` B ) ) ) |
| 35 | 28 34 | mpd | |- ( ( ( z e. { (/) , A } /\ w e. { (/) , B } ) /\ ( y e. ( z X. w ) /\ ( z X. w ) C_ x ) ) -> w = ( _I ` B ) ) |
| 36 | 26 35 | xpeq12d | |- ( ( ( z e. { (/) , A } /\ w e. { (/) , B } ) /\ ( y e. ( z X. w ) /\ ( z X. w ) C_ x ) ) -> ( z X. w ) = ( ( _I ` A ) X. ( _I ` B ) ) ) |
| 37 | simprr | |- ( ( ( z e. { (/) , A } /\ w e. { (/) , B } ) /\ ( y e. ( z X. w ) /\ ( z X. w ) C_ x ) ) -> ( z X. w ) C_ x ) |
|
| 38 | 36 37 | eqsstrrd | |- ( ( ( z e. { (/) , A } /\ w e. { (/) , B } ) /\ ( y e. ( z X. w ) /\ ( z X. w ) C_ x ) ) -> ( ( _I ` A ) X. ( _I ` B ) ) C_ x ) |
| 39 | 38 | adantll | |- ( ( ( x e. ( { (/) , A } tX { (/) , B } ) /\ ( z e. { (/) , A } /\ w e. { (/) , B } ) ) /\ ( y e. ( z X. w ) /\ ( z X. w ) C_ x ) ) -> ( ( _I ` A ) X. ( _I ` B ) ) C_ x ) |
| 40 | 13 39 | eqssd | |- ( ( ( x e. ( { (/) , A } tX { (/) , B } ) /\ ( z e. { (/) , A } /\ w e. { (/) , B } ) ) /\ ( y e. ( z X. w ) /\ ( z X. w ) C_ x ) ) -> x = ( ( _I ` A ) X. ( _I ` B ) ) ) |
| 41 | 40 | ex | |- ( ( x e. ( { (/) , A } tX { (/) , B } ) /\ ( z e. { (/) , A } /\ w e. { (/) , B } ) ) -> ( ( y e. ( z X. w ) /\ ( z X. w ) C_ x ) -> x = ( ( _I ` A ) X. ( _I ` B ) ) ) ) |
| 42 | 41 | rexlimdvva | |- ( x e. ( { (/) , A } tX { (/) , B } ) -> ( E. z e. { (/) , A } E. w e. { (/) , B } ( y e. ( z X. w ) /\ ( z X. w ) C_ x ) -> x = ( ( _I ` A ) X. ( _I ` B ) ) ) ) |
| 43 | 7 42 | syld | |- ( x e. ( { (/) , A } tX { (/) , B } ) -> ( y e. x -> x = ( ( _I ` A ) X. ( _I ` B ) ) ) ) |
| 44 | 43 | exlimdv | |- ( x e. ( { (/) , A } tX { (/) , B } ) -> ( E. y y e. x -> x = ( ( _I ` A ) X. ( _I ` B ) ) ) ) |
| 45 | 1 44 | biimtrid | |- ( x e. ( { (/) , A } tX { (/) , B } ) -> ( -. x = (/) -> x = ( ( _I ` A ) X. ( _I ` B ) ) ) ) |
| 46 | 45 | orrd | |- ( x e. ( { (/) , A } tX { (/) , B } ) -> ( x = (/) \/ x = ( ( _I ` A ) X. ( _I ` B ) ) ) ) |
| 47 | vex | |- x e. _V |
|
| 48 | 47 | elpr | |- ( x e. { (/) , ( ( _I ` A ) X. ( _I ` B ) ) } <-> ( x = (/) \/ x = ( ( _I ` A ) X. ( _I ` B ) ) ) ) |
| 49 | 46 48 | sylibr | |- ( x e. ( { (/) , A } tX { (/) , B } ) -> x e. { (/) , ( ( _I ` A ) X. ( _I ` B ) ) } ) |
| 50 | 49 | ssriv | |- ( { (/) , A } tX { (/) , B } ) C_ { (/) , ( ( _I ` A ) X. ( _I ` B ) ) } |
| 51 | 9 | toptopon | |- ( { (/) , A } e. Top <-> { (/) , A } e. ( TopOn ` ( _I ` A ) ) ) |
| 52 | 2 51 | mpbi | |- { (/) , A } e. ( TopOn ` ( _I ` A ) ) |
| 53 | 10 | toptopon | |- ( { (/) , B } e. Top <-> { (/) , B } e. ( TopOn ` ( _I ` B ) ) ) |
| 54 | 3 53 | mpbi | |- { (/) , B } e. ( TopOn ` ( _I ` B ) ) |
| 55 | txtopon | |- ( ( { (/) , A } e. ( TopOn ` ( _I ` A ) ) /\ { (/) , B } e. ( TopOn ` ( _I ` B ) ) ) -> ( { (/) , A } tX { (/) , B } ) e. ( TopOn ` ( ( _I ` A ) X. ( _I ` B ) ) ) ) |
|
| 56 | 52 54 55 | mp2an | |- ( { (/) , A } tX { (/) , B } ) e. ( TopOn ` ( ( _I ` A ) X. ( _I ` B ) ) ) |
| 57 | topgele | |- ( ( { (/) , A } tX { (/) , B } ) e. ( TopOn ` ( ( _I ` A ) X. ( _I ` B ) ) ) -> ( { (/) , ( ( _I ` A ) X. ( _I ` B ) ) } C_ ( { (/) , A } tX { (/) , B } ) /\ ( { (/) , A } tX { (/) , B } ) C_ ~P ( ( _I ` A ) X. ( _I ` B ) ) ) ) |
|
| 58 | 56 57 | ax-mp | |- ( { (/) , ( ( _I ` A ) X. ( _I ` B ) ) } C_ ( { (/) , A } tX { (/) , B } ) /\ ( { (/) , A } tX { (/) , B } ) C_ ~P ( ( _I ` A ) X. ( _I ` B ) ) ) |
| 59 | 58 | simpli | |- { (/) , ( ( _I ` A ) X. ( _I ` B ) ) } C_ ( { (/) , A } tX { (/) , B } ) |
| 60 | 50 59 | eqssi | |- ( { (/) , A } tX { (/) , B } ) = { (/) , ( ( _I ` A ) X. ( _I ` B ) ) } |
| 61 | txindislem | |- ( ( _I ` A ) X. ( _I ` B ) ) = ( _I ` ( A X. B ) ) |
|
| 62 | 61 | preq2i | |- { (/) , ( ( _I ` A ) X. ( _I ` B ) ) } = { (/) , ( _I ` ( A X. B ) ) } |
| 63 | indislem | |- { (/) , ( _I ` ( A X. B ) ) } = { (/) , ( A X. B ) } |
|
| 64 | 60 62 63 | 3eqtri | |- ( { (/) , A } tX { (/) , B } ) = { (/) , ( A X. B ) } |