This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The topologies over the same set have the greatest element (the discrete topology) and the least element (the indiscrete topology). (Contributed by FL, 18-Apr-2010) (Revised by Mario Carneiro, 16-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | topgele | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( { ∅ , 𝑋 } ⊆ 𝐽 ∧ 𝐽 ⊆ 𝒫 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | topontop | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐽 ∈ Top ) | |
| 2 | 0opn | ⊢ ( 𝐽 ∈ Top → ∅ ∈ 𝐽 ) | |
| 3 | 1 2 | syl | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ∅ ∈ 𝐽 ) |
| 4 | toponmax | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 ∈ 𝐽 ) | |
| 5 | 3 4 | prssd | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → { ∅ , 𝑋 } ⊆ 𝐽 ) |
| 6 | toponuni | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) | |
| 7 | eqimss2 | ⊢ ( 𝑋 = ∪ 𝐽 → ∪ 𝐽 ⊆ 𝑋 ) | |
| 8 | 6 7 | syl | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ∪ 𝐽 ⊆ 𝑋 ) |
| 9 | sspwuni | ⊢ ( 𝐽 ⊆ 𝒫 𝑋 ↔ ∪ 𝐽 ⊆ 𝑋 ) | |
| 10 | 8 9 | sylibr | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐽 ⊆ 𝒫 𝑋 ) |
| 11 | 5 10 | jca | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( { ∅ , 𝑋 } ⊆ 𝐽 ∧ 𝐽 ⊆ 𝒫 𝑋 ) ) |