This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for txindis . (Contributed by Mario Carneiro, 14-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | txindislem | ⊢ ( ( I ‘ 𝐴 ) × ( I ‘ 𝐵 ) ) = ( I ‘ ( 𝐴 × 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0xp | ⊢ ( ∅ × ( I ‘ 𝐵 ) ) = ∅ | |
| 2 | fvprc | ⊢ ( ¬ 𝐴 ∈ V → ( I ‘ 𝐴 ) = ∅ ) | |
| 3 | 2 | xpeq1d | ⊢ ( ¬ 𝐴 ∈ V → ( ( I ‘ 𝐴 ) × ( I ‘ 𝐵 ) ) = ( ∅ × ( I ‘ 𝐵 ) ) ) |
| 4 | simpr | ⊢ ( ( ¬ 𝐴 ∈ V ∧ 𝐵 = ∅ ) → 𝐵 = ∅ ) | |
| 5 | 4 | xpeq2d | ⊢ ( ( ¬ 𝐴 ∈ V ∧ 𝐵 = ∅ ) → ( 𝐴 × 𝐵 ) = ( 𝐴 × ∅ ) ) |
| 6 | xp0 | ⊢ ( 𝐴 × ∅ ) = ∅ | |
| 7 | 5 6 | eqtrdi | ⊢ ( ( ¬ 𝐴 ∈ V ∧ 𝐵 = ∅ ) → ( 𝐴 × 𝐵 ) = ∅ ) |
| 8 | 7 | fveq2d | ⊢ ( ( ¬ 𝐴 ∈ V ∧ 𝐵 = ∅ ) → ( I ‘ ( 𝐴 × 𝐵 ) ) = ( I ‘ ∅ ) ) |
| 9 | 0ex | ⊢ ∅ ∈ V | |
| 10 | fvi | ⊢ ( ∅ ∈ V → ( I ‘ ∅ ) = ∅ ) | |
| 11 | 9 10 | ax-mp | ⊢ ( I ‘ ∅ ) = ∅ |
| 12 | 8 11 | eqtrdi | ⊢ ( ( ¬ 𝐴 ∈ V ∧ 𝐵 = ∅ ) → ( I ‘ ( 𝐴 × 𝐵 ) ) = ∅ ) |
| 13 | dmexg | ⊢ ( ( 𝐴 × 𝐵 ) ∈ V → dom ( 𝐴 × 𝐵 ) ∈ V ) | |
| 14 | dmxp | ⊢ ( 𝐵 ≠ ∅ → dom ( 𝐴 × 𝐵 ) = 𝐴 ) | |
| 15 | 14 | eleq1d | ⊢ ( 𝐵 ≠ ∅ → ( dom ( 𝐴 × 𝐵 ) ∈ V ↔ 𝐴 ∈ V ) ) |
| 16 | 13 15 | imbitrid | ⊢ ( 𝐵 ≠ ∅ → ( ( 𝐴 × 𝐵 ) ∈ V → 𝐴 ∈ V ) ) |
| 17 | 16 | con3d | ⊢ ( 𝐵 ≠ ∅ → ( ¬ 𝐴 ∈ V → ¬ ( 𝐴 × 𝐵 ) ∈ V ) ) |
| 18 | 17 | impcom | ⊢ ( ( ¬ 𝐴 ∈ V ∧ 𝐵 ≠ ∅ ) → ¬ ( 𝐴 × 𝐵 ) ∈ V ) |
| 19 | fvprc | ⊢ ( ¬ ( 𝐴 × 𝐵 ) ∈ V → ( I ‘ ( 𝐴 × 𝐵 ) ) = ∅ ) | |
| 20 | 18 19 | syl | ⊢ ( ( ¬ 𝐴 ∈ V ∧ 𝐵 ≠ ∅ ) → ( I ‘ ( 𝐴 × 𝐵 ) ) = ∅ ) |
| 21 | 12 20 | pm2.61dane | ⊢ ( ¬ 𝐴 ∈ V → ( I ‘ ( 𝐴 × 𝐵 ) ) = ∅ ) |
| 22 | 1 3 21 | 3eqtr4a | ⊢ ( ¬ 𝐴 ∈ V → ( ( I ‘ 𝐴 ) × ( I ‘ 𝐵 ) ) = ( I ‘ ( 𝐴 × 𝐵 ) ) ) |
| 23 | xp0 | ⊢ ( ( I ‘ 𝐴 ) × ∅ ) = ∅ | |
| 24 | fvprc | ⊢ ( ¬ 𝐵 ∈ V → ( I ‘ 𝐵 ) = ∅ ) | |
| 25 | 24 | xpeq2d | ⊢ ( ¬ 𝐵 ∈ V → ( ( I ‘ 𝐴 ) × ( I ‘ 𝐵 ) ) = ( ( I ‘ 𝐴 ) × ∅ ) ) |
| 26 | simpr | ⊢ ( ( ¬ 𝐵 ∈ V ∧ 𝐴 = ∅ ) → 𝐴 = ∅ ) | |
| 27 | 26 | xpeq1d | ⊢ ( ( ¬ 𝐵 ∈ V ∧ 𝐴 = ∅ ) → ( 𝐴 × 𝐵 ) = ( ∅ × 𝐵 ) ) |
| 28 | 0xp | ⊢ ( ∅ × 𝐵 ) = ∅ | |
| 29 | 27 28 | eqtrdi | ⊢ ( ( ¬ 𝐵 ∈ V ∧ 𝐴 = ∅ ) → ( 𝐴 × 𝐵 ) = ∅ ) |
| 30 | 29 | fveq2d | ⊢ ( ( ¬ 𝐵 ∈ V ∧ 𝐴 = ∅ ) → ( I ‘ ( 𝐴 × 𝐵 ) ) = ( I ‘ ∅ ) ) |
| 31 | 30 11 | eqtrdi | ⊢ ( ( ¬ 𝐵 ∈ V ∧ 𝐴 = ∅ ) → ( I ‘ ( 𝐴 × 𝐵 ) ) = ∅ ) |
| 32 | rnexg | ⊢ ( ( 𝐴 × 𝐵 ) ∈ V → ran ( 𝐴 × 𝐵 ) ∈ V ) | |
| 33 | rnxp | ⊢ ( 𝐴 ≠ ∅ → ran ( 𝐴 × 𝐵 ) = 𝐵 ) | |
| 34 | 33 | eleq1d | ⊢ ( 𝐴 ≠ ∅ → ( ran ( 𝐴 × 𝐵 ) ∈ V ↔ 𝐵 ∈ V ) ) |
| 35 | 32 34 | imbitrid | ⊢ ( 𝐴 ≠ ∅ → ( ( 𝐴 × 𝐵 ) ∈ V → 𝐵 ∈ V ) ) |
| 36 | 35 | con3d | ⊢ ( 𝐴 ≠ ∅ → ( ¬ 𝐵 ∈ V → ¬ ( 𝐴 × 𝐵 ) ∈ V ) ) |
| 37 | 36 | impcom | ⊢ ( ( ¬ 𝐵 ∈ V ∧ 𝐴 ≠ ∅ ) → ¬ ( 𝐴 × 𝐵 ) ∈ V ) |
| 38 | 37 19 | syl | ⊢ ( ( ¬ 𝐵 ∈ V ∧ 𝐴 ≠ ∅ ) → ( I ‘ ( 𝐴 × 𝐵 ) ) = ∅ ) |
| 39 | 31 38 | pm2.61dane | ⊢ ( ¬ 𝐵 ∈ V → ( I ‘ ( 𝐴 × 𝐵 ) ) = ∅ ) |
| 40 | 23 25 39 | 3eqtr4a | ⊢ ( ¬ 𝐵 ∈ V → ( ( I ‘ 𝐴 ) × ( I ‘ 𝐵 ) ) = ( I ‘ ( 𝐴 × 𝐵 ) ) ) |
| 41 | fvi | ⊢ ( 𝐴 ∈ V → ( I ‘ 𝐴 ) = 𝐴 ) | |
| 42 | fvi | ⊢ ( 𝐵 ∈ V → ( I ‘ 𝐵 ) = 𝐵 ) | |
| 43 | xpeq12 | ⊢ ( ( ( I ‘ 𝐴 ) = 𝐴 ∧ ( I ‘ 𝐵 ) = 𝐵 ) → ( ( I ‘ 𝐴 ) × ( I ‘ 𝐵 ) ) = ( 𝐴 × 𝐵 ) ) | |
| 44 | 41 42 43 | syl2an | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( ( I ‘ 𝐴 ) × ( I ‘ 𝐵 ) ) = ( 𝐴 × 𝐵 ) ) |
| 45 | xpexg | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝐴 × 𝐵 ) ∈ V ) | |
| 46 | fvi | ⊢ ( ( 𝐴 × 𝐵 ) ∈ V → ( I ‘ ( 𝐴 × 𝐵 ) ) = ( 𝐴 × 𝐵 ) ) | |
| 47 | 45 46 | syl | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( I ‘ ( 𝐴 × 𝐵 ) ) = ( 𝐴 × 𝐵 ) ) |
| 48 | 44 47 | eqtr4d | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( ( I ‘ 𝐴 ) × ( I ‘ 𝐵 ) ) = ( I ‘ ( 𝐴 × 𝐵 ) ) ) |
| 49 | 22 40 48 | ecase | ⊢ ( ( I ‘ 𝐴 ) × ( I ‘ 𝐵 ) ) = ( I ‘ ( 𝐴 × 𝐵 ) ) |