This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Express the predicate "the set B is a basis for a topology". (Contributed by NM, 17-Jul-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isbasis2g | ⊢ ( 𝐵 ∈ 𝐶 → ( 𝐵 ∈ TopBases ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ∃ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isbasisg | ⊢ ( 𝐵 ∈ 𝐶 → ( 𝐵 ∈ TopBases ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( 𝐵 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ) ) | |
| 2 | dfss3 | ⊢ ( ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( 𝐵 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ↔ ∀ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) 𝑧 ∈ ∪ ( 𝐵 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ) | |
| 3 | elin | ⊢ ( 𝑤 ∈ ( 𝐵 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ↔ ( 𝑤 ∈ 𝐵 ∧ 𝑤 ∈ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ) | |
| 4 | velpw | ⊢ ( 𝑤 ∈ 𝒫 ( 𝑥 ∩ 𝑦 ) ↔ 𝑤 ⊆ ( 𝑥 ∩ 𝑦 ) ) | |
| 5 | 4 | anbi2i | ⊢ ( ( 𝑤 ∈ 𝐵 ∧ 𝑤 ∈ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ↔ ( 𝑤 ∈ 𝐵 ∧ 𝑤 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) |
| 6 | 3 5 | bitri | ⊢ ( 𝑤 ∈ ( 𝐵 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ↔ ( 𝑤 ∈ 𝐵 ∧ 𝑤 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) |
| 7 | 6 | anbi2i | ⊢ ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ ( 𝐵 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ) ↔ ( 𝑧 ∈ 𝑤 ∧ ( 𝑤 ∈ 𝐵 ∧ 𝑤 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) ) |
| 8 | an12 | ⊢ ( ( 𝑧 ∈ 𝑤 ∧ ( 𝑤 ∈ 𝐵 ∧ 𝑤 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) ↔ ( 𝑤 ∈ 𝐵 ∧ ( 𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) ) | |
| 9 | 7 8 | bitri | ⊢ ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ ( 𝐵 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ) ↔ ( 𝑤 ∈ 𝐵 ∧ ( 𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) ) |
| 10 | 9 | exbii | ⊢ ( ∃ 𝑤 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ ( 𝐵 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ) ↔ ∃ 𝑤 ( 𝑤 ∈ 𝐵 ∧ ( 𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) ) |
| 11 | eluni | ⊢ ( 𝑧 ∈ ∪ ( 𝐵 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ↔ ∃ 𝑤 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ ( 𝐵 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ) ) | |
| 12 | df-rex | ⊢ ( ∃ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ ( 𝑥 ∩ 𝑦 ) ) ↔ ∃ 𝑤 ( 𝑤 ∈ 𝐵 ∧ ( 𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) ) | |
| 13 | 10 11 12 | 3bitr4i | ⊢ ( 𝑧 ∈ ∪ ( 𝐵 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ↔ ∃ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) |
| 14 | 13 | ralbii | ⊢ ( ∀ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) 𝑧 ∈ ∪ ( 𝐵 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ↔ ∀ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ∃ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) |
| 15 | 2 14 | bitri | ⊢ ( ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( 𝐵 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ↔ ∀ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ∃ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) |
| 16 | 15 | 2ralbii | ⊢ ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( 𝐵 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ∃ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) |
| 17 | 1 16 | bitrdi | ⊢ ( 𝐵 ∈ 𝐶 → ( 𝐵 ∈ TopBases ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ∃ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) ) |