This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ttukey . Expand out the property of being an element of a property of finite character. (Contributed by Mario Carneiro, 15-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ttukeylem.1 | |- ( ph -> F : ( card ` ( U. A \ B ) ) -1-1-onto-> ( U. A \ B ) ) |
|
| ttukeylem.2 | |- ( ph -> B e. A ) |
||
| ttukeylem.3 | |- ( ph -> A. x ( x e. A <-> ( ~P x i^i Fin ) C_ A ) ) |
||
| Assertion | ttukeylem1 | |- ( ph -> ( C e. A <-> ( ~P C i^i Fin ) C_ A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ttukeylem.1 | |- ( ph -> F : ( card ` ( U. A \ B ) ) -1-1-onto-> ( U. A \ B ) ) |
|
| 2 | ttukeylem.2 | |- ( ph -> B e. A ) |
|
| 3 | ttukeylem.3 | |- ( ph -> A. x ( x e. A <-> ( ~P x i^i Fin ) C_ A ) ) |
|
| 4 | elex | |- ( C e. A -> C e. _V ) |
|
| 5 | 4 | a1i | |- ( ph -> ( C e. A -> C e. _V ) ) |
| 6 | id | |- ( ( ~P C i^i Fin ) C_ A -> ( ~P C i^i Fin ) C_ A ) |
|
| 7 | ssun1 | |- U. A C_ ( U. A u. B ) |
|
| 8 | undif1 | |- ( ( U. A \ B ) u. B ) = ( U. A u. B ) |
|
| 9 | 7 8 | sseqtrri | |- U. A C_ ( ( U. A \ B ) u. B ) |
| 10 | fvex | |- ( card ` ( U. A \ B ) ) e. _V |
|
| 11 | f1ofo | |- ( F : ( card ` ( U. A \ B ) ) -1-1-onto-> ( U. A \ B ) -> F : ( card ` ( U. A \ B ) ) -onto-> ( U. A \ B ) ) |
|
| 12 | 1 11 | syl | |- ( ph -> F : ( card ` ( U. A \ B ) ) -onto-> ( U. A \ B ) ) |
| 13 | focdmex | |- ( ( card ` ( U. A \ B ) ) e. _V -> ( F : ( card ` ( U. A \ B ) ) -onto-> ( U. A \ B ) -> ( U. A \ B ) e. _V ) ) |
|
| 14 | 10 12 13 | mpsyl | |- ( ph -> ( U. A \ B ) e. _V ) |
| 15 | unexg | |- ( ( ( U. A \ B ) e. _V /\ B e. A ) -> ( ( U. A \ B ) u. B ) e. _V ) |
|
| 16 | 14 2 15 | syl2anc | |- ( ph -> ( ( U. A \ B ) u. B ) e. _V ) |
| 17 | ssexg | |- ( ( U. A C_ ( ( U. A \ B ) u. B ) /\ ( ( U. A \ B ) u. B ) e. _V ) -> U. A e. _V ) |
|
| 18 | 9 16 17 | sylancr | |- ( ph -> U. A e. _V ) |
| 19 | uniexb | |- ( A e. _V <-> U. A e. _V ) |
|
| 20 | 18 19 | sylibr | |- ( ph -> A e. _V ) |
| 21 | ssexg | |- ( ( ( ~P C i^i Fin ) C_ A /\ A e. _V ) -> ( ~P C i^i Fin ) e. _V ) |
|
| 22 | 6 20 21 | syl2anr | |- ( ( ph /\ ( ~P C i^i Fin ) C_ A ) -> ( ~P C i^i Fin ) e. _V ) |
| 23 | infpwfidom | |- ( ( ~P C i^i Fin ) e. _V -> C ~<_ ( ~P C i^i Fin ) ) |
|
| 24 | reldom | |- Rel ~<_ |
|
| 25 | 24 | brrelex1i | |- ( C ~<_ ( ~P C i^i Fin ) -> C e. _V ) |
| 26 | 22 23 25 | 3syl | |- ( ( ph /\ ( ~P C i^i Fin ) C_ A ) -> C e. _V ) |
| 27 | 26 | ex | |- ( ph -> ( ( ~P C i^i Fin ) C_ A -> C e. _V ) ) |
| 28 | eleq1 | |- ( x = C -> ( x e. A <-> C e. A ) ) |
|
| 29 | pweq | |- ( x = C -> ~P x = ~P C ) |
|
| 30 | 29 | ineq1d | |- ( x = C -> ( ~P x i^i Fin ) = ( ~P C i^i Fin ) ) |
| 31 | 30 | sseq1d | |- ( x = C -> ( ( ~P x i^i Fin ) C_ A <-> ( ~P C i^i Fin ) C_ A ) ) |
| 32 | 28 31 | bibi12d | |- ( x = C -> ( ( x e. A <-> ( ~P x i^i Fin ) C_ A ) <-> ( C e. A <-> ( ~P C i^i Fin ) C_ A ) ) ) |
| 33 | 32 | spcgv | |- ( C e. _V -> ( A. x ( x e. A <-> ( ~P x i^i Fin ) C_ A ) -> ( C e. A <-> ( ~P C i^i Fin ) C_ A ) ) ) |
| 34 | 3 33 | syl5com | |- ( ph -> ( C e. _V -> ( C e. A <-> ( ~P C i^i Fin ) C_ A ) ) ) |
| 35 | 5 27 34 | pm5.21ndd | |- ( ph -> ( C e. A <-> ( ~P C i^i Fin ) C_ A ) ) |